МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ ОДЕСЬКИЙ НАЦІОНАЛЬНИЙ УНІВЕРСИТЕТ імені І.І. МЕЧНИКОВА МІНІСТЕРСТВО ОСВІТИ І НАУКИ УКРАЇНИ НАЦІОНАЛЬНИЙ АВІАЦІЙНИЙ УНІВЕРСИТЕТ

Кваліфікаційна наукова праця на правах рукопису

Троянський Володимир Володимирович

УДК 523.4

ДИСЕРТАЦІЯ

ДИНАМІКА ОБРАНИХ ПОДВІЙНИХ І КРАТНИХ МАЛИХ ТІЛ СОНЯЧНОЇ СИСТЕМИ

01.03.01 – Астрометрія і небесна механіка Фізика та астрономія

Подається на здобуття наукового ступеня кандидата фізико-математичних наук

Дисертація містить результати власних досліджень.

Використання ідей, результатів і текстів інших

авторів мають посилання на відповідне джерело.

_____ (В.В. Троянський)

Науковий керівник

Базєй Олександр Анатолійович,

кандидат фізико-математичних наук,

доцент кафедри теоретичної фізики та астрономії

Одеса - 2017

АНОТАЦІЯ

Троянський В.В. Динаміка обраних подвійних і кратних малих тіл Сонячної системи. – Кваліфікаційна наукова праця на правах рукопису.

Дисертація на здобуття наукового ступеня кандидата фізико-математичних наук за спеціальністю 01.03.01 "Астрометрія і небесна механіка" (104 – Фізика та астрономія). – Одеський національний університет імені І.І. Мечникова, Національний авіаційний університет, Київ, 2017.

Робота присвячена дослідженню динаміки супутників в подвійних і кратних системах малих тіл. Основою дослідження є унікальне комп'ютерне моделювання, виконане автором, а також отримані на телескопі ОМТ-800 НДІ "Астрономічна обсерваторія" ОНУ імені І.І. Мечникова астрометричні спостереження астероїдів в навколоземному просторі. В роботі використані аналітичні розрахунки стійкості руху супутників в подвійних і потрійних астероїдних системах.

Метою дисертаційної роботи є вивчення динаміки супутників астероїдів, реалізація методик визначення коефіцієнтів розкладання гравітаційного поля компонентів астероїдних систем та дослідження внеску періодичних и вікових збурень в еволюцію орбіт астероїдних систем.

Основні методи дослідження – астрометричні оптичні спостереження астероїдів, комп'ютерне моделювання руху в подвійних і кратних астероїдних системах на основі чисельного інтегрування рівнянь руху в координатах методом Еверхарта п'ятнадцятого порядку. Для інтерпретації отриманих величин застосовувався періодограмний аналіз.

Впроваджено нове програмне забезпечення для пошуку невідомих об'єктів Сонячної системи, що дозволило підвищити проникну здатність телескопа ОМТ-800 з 19^m до 21^m. В результаті оглядових спостережень подвійних і кратних малих тіл Сонячної системи, було відкрито два малих тіла, одне з яких ідентифіковано як раніше загублений астероїд.

Розраховані умови розриву для 168 подвійних і кратних малих тіл Сонячної системи.

Знайдено 10 орбітальних, 26 спін-орбітальних і 28 спін-спінових резонансів в обраних подвійних і кратних системах малих тіл.

Вперше обчислені: маса, велика піввісь орбіти, орбітальний період, резонанси, гіпотетичного супутника-пастуха астероїда (10199) Chariklo.

Вперше обчислені 5 коефіцієнтів розкладання по сферичним функціям потенціалу гравітаційного поля обраних компонентів астероїдних систем. Не всі значення збігаються з отриманими раніше результатами попередніх робіт. Це може бути пов'язано з відмінністю вихідних даних та методами їх отримання.

Побудована чисельна модель руху в системах подвійних та кратних малих тіл Сонячної системи. В моделі враховано тяжіння Сонця та великих планет, асиметрію малих тіл, тиск сонячного світла з урахуванням тіньової функції. Модель дозволила виявити деякі особливості еволюції орбіт супутників.

Чисельна модель апробована на подвійних і кратних малих тілах Сонячної системи: (45) Eugenia, (87) Sylvia, (90) Antiope, (66391) 1999 KW4, (134340) Pluto, (136108) Haumea, (136617) 1994 CC, (153591) 2001 SN263, (385446) Manwe. Отримані зміни Кеплерових елементів орбіт на інтервалі 100 років і 1000 років в цілому підтверджують результати, отримані іншими авторами. Знайдено вікові зміни в деяких Кеплерових елементах орбіт супутників. У всіх елементах орбіт обчислені величини періодичних змін і запропоновані можливі причини їх походження. Так само знайдені однакові періодичні коливання в Кеплерових елементах орбіт одного і того ж супутника.

На основі побудованої моделі астероїдної системи стало можливим отримання фотометричних характеристик системи, які спостерігаються з Землі. Порівняння кривих блиску астероїдних систем з модельними значеннями дозволить виявити особливості будови і фізичних властивостей поверхонь малих тіл.

Ключові слова: астероїдна система, супутник-пастух, резонанси в астероїдних системах, еволюція орбіт супутників астероїдів.

СПИСОК ПУБЛІКАЦІЙ ЗДОБУВАЧА

1. Troianskyi V.V. Method for calculating orbits of near-Earth asteroids observed with telescope OMT-800 / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov, S.O. Korzhavin // Odessa Astronomical Publications. – 2014. – Vol. 27(2). – P. 154-155.

2. Troianskyi V.V. Determination of the small Solar system bodies orbital elements from astrometric observations with OMT-800 telescope / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov // Third Gaia Fun SSO "Gaia Follow-up Network for Solar System Objects". – Paris: IMCCE. – 2015. – Vol. 3. – P. 127-130.

3. Troianskyi V.V. The Solar-radiation pressure effects on the orbital evolution of asteroid moons / V.V. Troianskyi, O.A. Bazyey // Odessa Astronomical Publications. – 2015. – Vol. 28(1). – P. 76-77.

4. Troianskyi V.V. The impact of the non-sphericity of the gravitational field of the asteroid on the evolution of the orbits of its satellites / V.V. Troianskyi // Odessa Astronomical Publications. – 2015. – Vol. 28(2). – P. 299-303.

5. Troianskyi V.V. Disintegration's condition of binary and multiple asteroids under the action of tidal forces Major Solar system planets / Troianskyi V.V., Radchenko K.O., Bazyey O.A. // Astronomical School's Report. – 2015. – Vol. 11(2). – P. 145-156.

 Troianskyi V.V. Resonances in the asteroids systems / V.V. Troianskyi // Odessa Astronomical Publications. – 2016. – Vol. 29. – P. 221-223.

 Troianskyi V.V. Dynamics of the asteroid rings (10199) Chariklo / Troianskyi V.V., Bazyey O.A. // Astronomical School's Report. – 2016. – Vol. 12(2). – P. 122-124.

 Bonomi R. Observations and Orbits of Comets / Bonomi R., Facchini M., Negrelli P [...] Troianskyi V. [...] // Minor Planet Electronic Circ. – 2014, 2015, 2016, 2017. No.2015-J41, No.2015-Q71, No.2015-U54, No.2015-H37, No.2015-E14, No.2015-N31, No. 2016-Q04, No. 2016-M09, No. 2016-K18, No. 2017-A77. 9. Троянский В.В. Эволюция орбит тройных астероидов 1994 СС и 2001 SN263, сближающихся с Землей / Троянский В.В., Базей А.А. // XVI Міжнародна наукова конференція "Астрономічна школа молодих вчених". Програма і тези доповідей. Кіровоград. – 2014. – С. 65.

10. Троянский В.В. Методика обработки наблюдений и прогнозирование движения астероидов сближающихся с Землей по данным телескопа ОМТ-800 / Троянский В.В., Базей А.А., Кашуба В.И., Жуков В.В. // 14-th Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmonicrophysics, Radioastronomy and Astrobiology". Program and abstracts. Odessa. – 2014. – P. 50.

11. Троянский В.В. Эволюция ретроградных орбит спутников двойных и кратных астероидов из группы AC3 / Троянский В.В., Базей А.А. // 14-th Ukrainian conference on space research. Abstracts. Kyiv. – 2014. – Р. 35.

12. Троянский В.В. Области устойчивого движения на орбитах спутников двойных и кратных астероидов сближающихся с Землей / Троянский В.В., Базей А.А. // VI Memorial International conference "CAMMAC-2014". Book of selected papers and abstracts. Vinnytsia. – 2014. – P. 88.

13. Троянский В.В. Орбитальный резонанс спутников астероидов сближающихся с Землей / Троянский В.В., Базей А.А. // Сьома міжнародна наукова конференція "Вибрані питання астрономії та астрофізики". Програма та тези. Львів. – 2014. – С. 42.

14. Troianskyi V.V. The impact of the non-sphericity of the gravitational field of the asteroid on the evolution of the orbits of its satellites / V.V. Troianskyi, O.A. Bazyey // 22rd Young Scientists' Conference on Astronomy and Space Physics. Abstracts. Kyiv. -2015. -P. 55.

15. Troianskyi V.V. Determination of small Solar system bodies orbital elements on astrometrical observations with OMT-800 telescope / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov // Gaia Fun SSO "Gaia Follow-up Network for Solar System Objects" #3. Programe and Abstracts. – Paris. – 2014. – P. 22.

16. Радченко К.О. Кратні астероїди головного поясу як елементи для утворення ретроградних супутників планет-гігантів / Радченко К.О., Троянський В.В. // XVII Міжнародна наукова конференція "Астрономічна школа молодих вчених". Програма і тези доповідей. Житомир. – 2015. – С. 67.

17. Troianskyi V. Dynamics of binary and triple asteroids / V. Troianskyi // International scientific and methodological conference "KOLOS 2015". Book of abstracts. Stakcin. – 2015. – P.6.

18. Troianskyi V. Numerical simulation of binary and multiple asteroids system dynamics / V. Troianskyi, O. Bazyey // XVI Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmomicrophysics, Radioastronomy and Astrobiology". Abstracts Book. Odessa. – 2016. – C. 39.

19. Troianskyi V. Numerical simulation of binary and multiple asteroids system dynamics / V. Troianskyi, O. Bazyey // Actual Questions of Ground-based Observational Astronomy "MAO-195". Mykolaiv. – 2016. – P. 25.

20. Горбачова А. Числова модель руху супутників карликової планети (134340) PLUTO / А. Горбачова, В. Троянський, О. Базєй // VIII наукова конференція "Вибрані питання астрономії та астрофізики". Програма та тези. Львів. – 2016. С. – 45.

21. Troianskyi V. Dynamics of multiple system Pluto / Troianskyi V., Bazyey
O., Zhukov V. // International scientific and methodological conference "KOLOS
2015". Book of abstracts. Stakcin. – 2016. – P.7.

22. Horbachova A. Dynamics of multiple system Pluto / Alice Horbachova, V.
V. Troianskyi, O. A. Bazyey // 24rd Young Scientists' Conference on Astronomy and Space Physics. Abstracts. Kyiv. – 2017. – P. 46.

23. Троянский В. Резонанс Коzai в астероидных системах / Троянский В.В., Базей А.А. // XIX Міжнародна наукова конференція "Астрономічна школа молодих вчених". Програма і тези доповідей. Біла Церква. – 2017. – С. 76.

ABSTRACT

Troianskyi V.V. Dynamics of selected binary and multiple small Solar system bodies. – Qualifying scientific work as a manuscript.

The thesis of the Ph.D., specialty 01.03.01 "Astrometry and Celestial mechanics" (104 – Physics and astronomy). Odessa I.I.Mechnikov National University, National Aviation University, Kyiv, 2017.

This thesis devoted to research the dynamics of satellites in binary and multiple systems of small bodies. The basis of the study is the unique computer simulation performed by the author, and observations of asteroids in near-Earth space received on OMT-800 telescope in Astronomical Observatory of Odessa I.I. Mechnikov National University. In the thesis used an analytical calculation of stability of satellites movement in binary and triple asteroid systems.

The purpose of the thesis is to study the dynamics of satellites, asteroids, implementation methodologies of determination the expansion coefficients of the gravitational field of asteroid components and research contribution of periodic disturbances in the annual evolution of asteroid systems orbits.

The main methods: optical astrometric observations of asteroids, computer modeling of a binary and multiple asteroid systems based on numerical integration of the equations of motion in the coordinates by Everhart fifteenth order. For interpretation of the obtained values, periodogramial analysis used.

Implemented new software to search for unknown objects in the Solar system, thus improving penetrating capability of the telescope OMT-800 from 19 Mag to 21 Mag. As a result of survey observations of binary and multiple Solar system bodies two new small bodies was discovered. One of them identified as previously lost asteroid.

Conditions of systems gap calculated for 168 binary and multiple systems of Solar system small bodies.

10 orbital, 26 spin-orbital and 28 spin-spinal resonances founded in selected binary and multiple systems.

The first time calculated the mass, the semi-major axis, the orbital period, resonances of hypothetical shepherd satellite of the asteroid (10199) Chariklo.

The first time five coefficients of expansions of gravitational field in spherical functions calculated for selected asteroid systems. Not all values are consistent with results previously obtained in previous work. Probably this connected with difference of data and methods of obtaining them.

The numerical model of motion was built for systems of binary and multiple small bodies of the Solar system. The model takes into account gravity of the Sun and the major planets, small bodies' asymmetry, the sunlight pressure considering the shadow function. The model allows to find some of the features of the evolution of satellites orbits

The numerical model approbated on binary and multiple small bodies of the Solar system: (45) Eugenia, (87) Sylvia, (90) Antiope, (66391) 1999 KW4, (134340) Pluto, (136108) Haumea, (136617) 1994 CC, (153591) 2001 SN263, (385446) Manwe. Obtained changes Keplerian orbital elements for range 100 years and 1000 years generally confirms the results obtained by other authors. Annual changes in certain Keplerian orbital elements founded. For all orbital elements calculated values of periodical changes and suggested possible causes of their origin. Also, found in the same periodic oscillations in Keplerian orbital elements of the same satellite.

Based on the developed model of asteroid system became possible to obtain photometric characteristics of the system observed from Earth. Comparison of asteroid light curves with model values will identify structural features and physical properties of surfaces of small bodies.

Keywords: Asteroid system, satellite shepherd, resonances in asteroid systems, orbital evolution of asteroids satellites.

REFERENCES

1. Troianskyi V.V. Method for calculating orbits of near-Earth asteroids observed with telescope OMT-800 / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov, S.O. Korzhavin // Odessa Astronomical Publications. – 2014. – Vol. 27(2). – P. 154-155.

Troianskyi V.V. Determination of the small Solar system bodies orbital elements from astrometric observations with OMT-800 telescope / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov // Third Gaia Fun SSO "Gaia Follow-up Network for Solar System Objects". – Paris: IMCCE. – 2015. – Vol. 3. – P. 127-130.

3. Troianskyi V.V. The Solar-radiation pressure effects on the orbital evolution of asteroid moons / V.V. Troianskyi, O.A. Bazyey // Odessa Astronomical Publications. – 2015. – Vol. 28(1). – P. 76-77.

4. Troianskyi V.V. The impact of the non-sphericity of the gravitational field of the asteroid on the evolution of the orbits of its satellites / V.V. Troianskyi // Odessa Astronomical Publications. – 2015. – Vol. 28(2). – P. 299-303.

5. Troianskyi V.V. Disintegration's condition of binary and multiple asteroids under the action of tidal forces Major Solar system planets / Troianskyi V.V., Radchenko K.O., Bazyey O.A. // Astronomical School's Report. – 2015. – Vol. 11(2). – P. 145-156.

 Troianskyi V.V. Resonances in the asteroids systems / V.V. Troianskyi // Odessa Astronomical Publications. – 2016. – Vol. 29. – P. 221-223.

7. Troianskyi V.V. Dynamics of the asteroid rings (10199) Chariklo / Troianskyi V.V., Bazyey O.A. // Astronomical School's Report. – 2016. – Vol. 12(2). – P. 122-124.

 Bonomi R. Observations and Orbits of Comets / Bonomi R., Facchini M., Negrelli P [...] Troianskyi V. [...] // Minor Planet Electronic Circ. – 2014, 2015, 2016, 2017. No.2015-J41, No.2015-Q71, No.2015-U54, No.2015-H37, No.2015-E14, No.2015-N31, No. 2016-Q04, No. 2016-M09, No. 2016-K18, No. 2017-A77. 9. Троянский В.В. Эволюция орбит тройных астероидов 1994 СС и 2001 SN263, сближающихся с Землей / Троянский В.В., Базей А.А. // XVI Міжнародна наукова конференція "Астрономічна школа молодих вчених". Програма і тези доповідей. Кіровоград. – 2014. – С. 65.

10. Троянский В.В. Методика обработки наблюдений и прогнозирование движения астероидов сближающихся с Землей по данным телескопа ОМТ-800 / Троянский В.В., Базей А.А., Кашуба В.И., Жуков В.В. // 14-th Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmonicrophysics, Radioastronomy and Astrobiology". Program and abstracts. Odessa. – 2014. – P. 50.

11. Троянский В.В. Эволюция ретроградных орбит спутников двойных и кратных астероидов из группы AC3 / Троянский В.В., Базей А.А. // 14-th Ukrainian conference on space research. Abstracts. Kyiv. – 2014. – Р. 35.

12. Троянский В.В. Области устойчивого движения на орбитах спутников двойных и кратных астероидов сближающихся с Землей / Троянский В.В., Базей А.А. // VI Memorial International conference "CAMMAC-2014". Book of selected papers and abstracts. Vinnytsia. – 2014. – P. 88.

13. Троянский В.В. Орбитальный резонанс спутников астероидов сближающихся с Землей / Троянский В.В., Базей А.А. // Сьома міжнародна наукова конференція "Вибрані питання астрономії та астрофізики". Програма та тези. Львів. – 2014. – С. 42.

14. Troianskyi V.V. The impact of the non-sphericity of the gravitational field of the asteroid on the evolution of the orbits of its satellites / V.V. Troianskyi, O.A. Bazyey // 22rd Young Scientists' Conference on Astronomy and Space Physics. Abstracts. Kyiv. -2015. -P. 55.

15. Troianskyi V.V. Determination of small Solar system bodies orbital elements on astrometrical observations with OMT-800 telescope / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov // Gaia Fun SSO "Gaia Follow-up Network for Solar System Objects" #3. Programe and Abstracts. – Paris. – 2014. – P. 22.

16. Радченко К.О. Кратні астероїди головного поясу як елементи для утворення ретроградних супутників планет-гігантів / Радченко К.О., Троянський В.В. // XVII Міжнародна наукова конференція "Астрономічна школа молодих вчених". Програма і тези доповідей. Житомир. – 2015. – С. 67.

17. Troianskyi V. Dynamics of binary and triple asteroids / V. Troianskyi // International scientific and methodological conference "KOLOS 2015". Book of abstracts. Stakcin. – 2015. – P.6.

18. Troianskyi V. Numerical simulation of binary and multiple asteroids system dynamics / V. Troianskyi, O. Bazyey // XVI Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmomicrophysics, Radioastronomy and Astrobiology". Abstracts Book. Odessa. – 2016. – C. 39.

19. Troianskyi V. Numerical simulation of binary and multiple asteroids system dynamics / V. Troianskyi, O. Bazyey // Actual Questions of Ground-based Observational Astronomy "MAO-195". Mykolaiv. – 2016. – P. 25.

20. Горбачова А. Числова модель руху супутників карликової планети (134340) PLUTO / А. Горбачова, В. Троянський, О. Базєй // VIII наукова конференція "Вибрані питання астрономії та астрофізики". Програма та тези. Львів. – 2016. С. – 45.

21. Troianskyi V. Dynamics of multiple system Pluto / Troianskyi V., Bazyey
O., Zhukov V. // International scientific and methodological conference "KOLOS
2015". Book of abstracts. Stakcin. – 2016. – P.7.

22. Horbachova A. Dynamics of multiple system Pluto / Alice Horbachova, V.
V. Troianskyi, O. A. Bazyey // 24rd Young Scientists' Conference on Astronomy and Space Physics. Abstracts. Kyiv. – 2017. – P. 46.

23. Троянский В. Резонанс Коzai в астероидных системах / Троянский В.В., Базей А.А. // XIX Міжнародна наукова конференція "Астрономічна школа молодих вчених". Програма і тези доповідей. Біла Церква. – 2017. – С. 76.

3MICT

2
4
7
9
2
4
5
2
2
24
.8
6
57
7
-2
51
52
3
8
69
<i>i</i> 9
50

3.3 Динаміка кілець астероїда (10199) Chariklo	63
3.4 Еволюція орбіт супутників обраних подвійних та кратних малих тіл	
Сонячної системи	67
3.5 Резонанс Kozai в системах малих тіл	97
3.6 Точність інтегрування диференціальних рівнянь руху	98
Короткі висновки до Розділу 3	100
ВИСНОВКИ	101
СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ	103
ДОДАТКИ	114

13

ПЕРЕЛІК УМОВНИХ ПОЗНАЧЕНЬ

^m – зоряна величина.

a.o. (AU) – астрономічна одиниця (1.49597870×10¹¹ ± 2000) метрів.

G – гравітаційна стала (6.67408 ± 0.00031) × 10⁻¹¹ м³·c⁻²·кг⁻¹.

а – велика піввісь орбіти.

q – перицентрична відстань.

Q – апоцентрична відстань.

е – ексцентриситет орбіти.

і – нахил орбіти.

Ω – довгота висхідного вузла орбіти.

ω – аргумент перицентру орбіти.

М₀ – середня аномалія орбіти.

 T_p – час проходження через перицентр.

t – час.

ВСТУП

Актуальність теми. З початку XXI століття безупинне вдосконалення засобів спостереження і збільшення числа космічних місій до небесних тіл суттєво розширили наші представлення про Сонячну систему. Рішенням XXVI Генеральної асамблеї МАС (Міжнародного Астрономічного Союзу) в 2006 році була введена нова класифікація небесних тіл. Сьогодні по орбітам навколо Сонця рухаються великі планети, карликові планети, астероїди або малі планети, комети, метеороїди, пил і газ.

Раніше передбачалося, що тіла невеликих мас не можуть утримувати тривалий час супутники. Несподіванкою стало відкриття подвійних [81], а згодом і потрійних [45] малих планет. Деякі подвійні системи мають дуже короткий орбітальний період і швидке осьове обертання [9]. Більш того, в 2014 році був відкритий перший астероїд, що має систему кілець [11]. Значний інтерес представляють малі тіла, які зближуються з орбітою Землі. До теперішнього часу відомо біля пів сотні подвійних і кратних астероїдів, що зближуються з Землею [87].

Перераховані факти повинні отримати теоретичне пояснення. Необхідно зрозуміти процеси формування і динамічної еволюції подвійних астероїдів протягом 4.5 млрд. років в оточенні великих планет. Які чинники ведуть до їх розпаду або, навпаки, до випадання і утворення єдиного астероїда? Чи можуть кратні системи малих тіл утворюватися в даний час?

Дисертація націлена на отримання нових теоретичних результатів, використання яких допоможе відповісти на поставлені запитання.

Зв'язок роботи з науковими програмами, планами, темами. Основна частина роботи виконана у Науково дослідному інституті "Астрономічна обсерваторія" та кафедрі астрономії ОНУ імені І.І. Мечникова в межах планових держбюджетних науково-дослідних тем №484 "Дослідження руху та фрагментації метеорних і штучних тіл в земній атмосфері та міжпланетному просторі" (20132014, номер держ. реєстрації 0112U001749, ОК 0215U004226, ІК 0715U003271) та №527 "Високоточні вимірювання та моделювання руху штучних і природних космічних тіл у навколоземному просторі" (2015-2017, номер держ. реєстрації 0115U003201).

Ціль досліджень. Метою даної дисертаційної роботи є:

1. Вивчення динаміки супутників астероїдів.

2. Реалізація методик визначення коефіцієнтів розкладання гравітаційного поля компонентів астероїдних систем.

3. Дослідження вкладу періодичних і вікових збурень в еволюцію орбіт астероїдних систем.

Об'єкт дослідження. Подвійні і кратні малі тіла Сонячної системи.

Предмет дослідження. Еволюція орбіт супутників подвійних і кратних малих тіл Сонячної системи.

Методи дослідження. Чисельне моделювання та інтегрування рівнянь руху. Для моделювання використовувався мова програмування *Object Pascal* в середовищі розробки *Delphi*. Спостереження на телескопі ОМТ-800.

Наукова новизна отриманих результатів. За допомогою нової методики обробки оптичних спостережень підвищена проникна здатність телескопа ОМТ-800 з 19^m до 21^m;

Уточнено орбіти нових астероїдів;

Вперше розраховані резонанси в астероїдних системах;

Вперше обчислені: маса, велика піввісь орбіти, орбітальний період, резонанси, передбачуваного супутника-пастуха астероїда (10199) Chariklo;

Вперше обчислені 5 коефіцієнтів розкладання потенціалу гравітаційного поля обраних компонентів астероїдних систем;

Побудована модель руху супутників малих тіл Сонячної системи, що враховує асиметрію компонентів моделі і тиск сонячного світла на супутники астероїдів;

Детально розглянуто 9 систем малих тіл: (45) Eugenia, (87) Sylvia, (90) Antiope, (66391) 1999 KW4, (134340) Pluto, (136108) Haumea, (136617) 1994 CC, (153591) 2001 SN263, (385446) Manwe.

Практичне значення отриманих результатів. Запропонована модель і методи вже використовуються в плануванні широкого спектра завдань спостережень (астрометричних та фотометричних) подвійних і кратних малих тіл Сонячної системи.

Особистий внесок здобувача. У роботах, виконаних зі співавторами, особистий внесок здобувача полягає в участі постановки задачі і проведенні чисельних та аналітичних розрахунків. Підготовка робіт до публікації.

Апробація результатів дисертації. Результати дисертаційної роботи доповідалися на наукових семінарах кафедри астрономії ОНУ імені І.І. Мечникова, НДІ "Астрономічна обсерваторія" ОНУ імені І.І. Мечникова і на наступних міжнародних наукових конференціях:

- 1. International scientific and methodological conference "KOLOS 2013", 5-7 December 2013, The Astronomical Observatory on Kolonica Saddle, Slovakia.
- XVI Міжнародна наукова конференція "Астрономічна школа молодих вчених", 29-31 травня 2014р., Кіровоградський державний педагогічний університет, Кіровоград, Україна.
- 14-th Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmomicrophysics, Radioastronomy and Astrobiology", August 17-24, 2014, Odessa I.I.Mechnikov National University, Odessa, Ukraine.

- 4. *14-th* Ukrainian conference on space research, September 8-12, 2014, Institute of electron physics NASU, Uzhgorod, Ukraine.
- 5. VI Memorial International conference "CAMMAC-2014", October 29 -November 2, 2014р., Вінницький державний педагогічний університет, Vinnytsia, Ukraine.
- VII міжнародна наукова конференція "Вибрані питання астрономії та астрофізики", 7-10 жовтня 2014р., Львівський національний університет імені Івана Франка, Львів, Україна.
- Third "Gaia Follow-up Network for Solar System Objects" Workshop, November 24-26, 2014, Institut de mécanique céleste et de calcul des éphémérides, Observatoire de Paris, France.
- International scientific and methodological conference "KOLOS 2014", December 4-6, 2014, The Astronomical Observatory on Kolonica Saddle, Slovakia.
- 22nd Young Scientists' Conference on Astronomy and Space Physics, April 20-25, 2015, Kyiv, Ukraine.
- 10.XVII Міжнародна наукова конференція "Астрономічна школа молодих вчених", 20-22 травня 2015р., Житомирський державний університет, Житомир, Україна.
- 11.5-th Gamow Memorial International Conference dedicated to 111-th anniversary of George Gamow "Astrophysics and Cosmology after Gamow: progress and perspectives" and 15-th Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmomicrophysics, Radioastronomy and Astrobiology", August 16-23, 2015, Odessa I.I.Mechnikov National University, Odessa, Ukraine.
- 12.International scientific and methodological conference "KOLOS 2015", December 3-5, 2015, The Astronomical Observatory on Kolonica Saddle, Slovakia.
- 13.The 4th "Workshop on Binaries in the Solar System", June 21-23, 2016, Prague, Czech Republic.

- 14.16-th Odessa International Astronomical Gamow Conference-School "Astronomy and beyond: Astrophysics, Cosmology and Gravitation, Cosmomicrophysics, Radioastronomy and Astrobiology", August 14-20, 2016, Odessa I.I.Mechnikov National University, Odessa, Ukraine.
- 15.*MAO* 195. "Actual Questions of Ground-based Observational Astronomy", September 26-29, 2016, Mykolaiv, Ukraine.
- 16. VIII наукова конференція "Вибрані питання астрономії та астрофізики", 17-12 жовтня 2016р., Львівський національний університет імені Івана Франка, Львів, Україна.
- 17.International scientific and methodological conference "KOLOS 2016", December 1-3, 2016, The Astronomical Observatory on Kolonica Saddle, Slovakia.
- 18.24nd Young Scientists' Conference on Astronomy and Space Physics, April 24-29, 2017, Kyiv, Ukraine.
- 19.XIX Міжнародна наукова конференція "Астрономічна школа молодих вчених", 24-25 травня 2017р., Біла Церква, Україна.

Публікації. Основні результати дисертаційної роботи викладені в 8 статтях (без урахування абстрактів конференцій). Список опублікованих статей:

- Troianskyi V.V. Method for calculating orbits of near-Earth asteroids observed with telescope OMT-800 / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov, S.O. Korzhavin // Odessa Astronomical Publications. – 2014. – Vol. 27(2). – P. 154-155.
- Troianskyi V.V. Determination of the small Solar system bodies orbital elements from astrometric observations with OMT-800 telescope / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov // Third Gaia Fun SSO "Gaia Follow-up Network for Solar System Objects". – Paris: IMCCE. – 2015. – Vol. 3. – P. 127-130.

- Troianskyi V.V. The Solar-radiation pressure effects on the orbital evolution of asteroid moons / V.V. Troianskyi, O.A. Bazyey // Odessa Astronomical Publications. – 2015. – Vol. 28(1). – P. 76-77.
- Troianskyi V.V. The impact of the non-sphericity of the gravitational field of the asteroid on the evolution of the orbits of its satellites / V.V. Troianskyi // Odessa Astronomical Publications. 2015. Vol. 28(2). P. 299-303.
- Troianskyi V.V. Disintegration's condition of binary and multiple asteroids under the action of tidal forces Major Solar system planets / Troianskyi V.V., Radchenko K.O., Bazyey O.A. // Astronomical School's Report. – 2015. – Vol. 11(2). – P. 145-156.
- Troianskyi V.V. Resonances in the asteroids systems / V.V. Troianskyi // Odessa Astronomical Publications. – 2016. – Vol. 29. – P. 221-223.
- Troianskyi V.V. Dynamics of the asteroid rings (10199) Chariklo / Troianskyi V.V., Bazyey O.A. // Astronomical School's Report. 2016. Vol. 12(2). P. 122-124.
- Bonomi R. Observations and Orbits of Comets / Bonomi R., Facchini M., Negrelli P [...] Troianskyi V. [...] // Minor Planet Electronic Circ. – 2014, 2015, 2016, 2017. No.2015-J41, No.2015-Q71, No.2015-U54, No.2015-H37, No.2015-E14, No.2015-N31, No. 2016-Q04, No. 2016-M09, No. 2016-K18, No. 2017-A77.

Зміст роботи. Дисертація складається зі вступу, трьох розділів, висновків, списку використаних джерел та додатків. Загальний обсяг роботи становить 147 сторінок, дисертація містить 50 малюнків, 13 таблиць, список цитованої літератури включає в себе 105 посилань.

У Вступі показані актуальність проблеми, мета дослідження і постановка задачі, представлені основні результати дисертації та положення, що виносяться на захист, дана їх наукова новизна і практична цінність. Наводяться обсяг і структура дисертації.

У **Першому** розділі викладені основні положення сучасного уявлення про групи і родини астероїдів. Наведено визначення малої планети і подвійної або кратної малої планети Сонячної системи. Показано кількість і перелічені методи відкриття супутників астероїдів. Наведено список досліджуваних об'єктів. Викладено нові особливості спостереження астероїдів при їх русі по геліоцентричних орбіт на телескопі ОМТ-800.

У Другому розділі розглянуті структурні складові чисельної моделі, що використовується для летального вивчення еволюції орбіт супутників систем малих тіл. Розписані рівня руху, в координатній формі. Розписані, методи врахування асиметрії компонентів системи, приливних горбів, тиску світла з урахуванням тіньової функції.

У **Третьому** розділі наведені умови розриву 168 астероїдних систем, розраховані резонанси в деяких з них. Вперше наведені орбітальні і фізичні характеристики гіпотетичного супутника-пастуха у астероїда (10199) Chariklo. Детально розглянуті дев'ять систем малих тіл, з подальшим періодограмним аналізом отриманих змін в Кеплерових елементах орбіт.

У Висновках містяться основні результати роботи.

У Додатках увійшли таблиці та рисунки, що не були поміщені в основний текст і мають допоміжне значення.

РОЗДІЛ 1. КЛАСИФІКАЦІЯ МАЛИХ ТІЛ СОНЯЧНОЇ СИСТЕМИ ТА ЇХ СПОСТЕРЕЖЕННЯ

1.1 Малі тіла Сонячної системи

У 2006 році Міжнародний Астрономічний Союз (МАС) для опису об'єктів Сонячної системи, які не є ні великими планетами, ні карликовими планетами, ні їх супутниками, ввів термін – мале тіло Сонячної системи [88].

Основними критеріями є – відсутність гідростатичної рівноваги і рух по геліоцентричної орбіті. Деякі з найбільших малих тіл Сонячної системи в подальшому можуть бути перекласифіковані в карликові планети, якщо в результаті досліджень з'ясується, що вони знаходяться в стані гідростатичної рівноваги.

Далі було розглянуто групи малих тіл Сонячної системи, які об'єднані на підставі орбітальних і фізичних параметрів. Групи отримують назву в честь свого першого відкритого представника або виходячи з місця розташування орбіт представників групи.

<u>Вулканоїди</u> – гіпотетичні астероїди, з великою піввіссю орбіти 0.07 – 0.21 а.о. Пошуки активно велися національним управлінням з повітроплавання і дослідженню космічного простору (NASA) [89] в 2009–2010 роках. Вулканоїди так і не були виявлені, якщо вони існують, то передбачається, що їх діаметр не перевищує 5.7 км, оскільки більші об'єкти були б вже виявлені [68].

<u>Астероїди які зближуються із Землею (АЗЗ, NEA)</u> – група астероїдів з перигелійною відстанню менше або рівною 1.3 а.о. Частина з них, які наближаються до Земної орбіти на 0.05 а.о. або менше і мають абсолютну зоряну величину не слабкіше 22^m, вважаються <u>потенційно небезпечними об'єктами</u> (PHAs).

АЗЗ в залежності від параметрів орбіт щодо Землі відносяться до однієї з наступних чотирьох груп:

<u>Атіри</u> (Atiras) – афелійна відстань менше 0.983 а.о. і велика піввісь менше 1 а.о.;

<u>Атони</u> (Atens) – афелійна відстань більше 0.983 а.о. і велика піввісь менше 1 а.о.;

<u>Аполлони</u> (Apollos) – перигелійна відстань менше 1.017 а.о. і велика піввісь більше 1 а.о.;

<u>Амури</u> (Amors) – перигелійна відстань лежить в межах від 1.017 а.о. до 1.3а.о. і велика піввісь більше 1 а.о..

<u>Марс-кроссери</u> (Mars-crossers) – астероїди, орбіти яких перетинають орбіту Марса. Перигелій орбіти даних астероїдів лежить в межах 1.66 – 1.3 а.о.

<u>Головний пояс астероїдів</u> (Main Belt members) – найчисленніша група астероїдів, що розташована між орбітами Марса і Юпітера. Першим відкритим об'єктом Головного поясу астероїдів і малим тілом Сонячної системи була (1) Ceres.

<u>Троянські астероїди</u> (Trojans asteroids) – група астероїдів, які рухаються в околицях точок лібрації системи Сонце - планета. Найбільше таких астероїдів виявлено у Юпітера. Так само були відкриті троянці у Нептуна, Марса і один у Землі.

<u>Кентаври</u> (Centaurs) – група астероїдів, що знаходиться між орбітами Юпітера і Нептуна 5.5 а.о. – 30.1 а.о. Кентаври за своїми орбітальними і фізичними властивостями схожі як на астероїди так і на комети.

<u>Дамоклоїди</u> (Damocloids) – невелика група астероїдів, які рухаються по кометоподібним траєкторіям, з ексцентриситетом орбіти більше 0.75 і великим нахилом орбіти.

<u>Транснептунові об'єкти, THO</u> (Trans-Neptunian objects, TNO) – група малих тіл, що знаходяться за орбітою Нептуна, велика піввісь орбіти, більше 30 а.о. Транснептунові об'єкти утворюють пояс Койпера, розсіяний диск і хмару Оорта, які, в свою чергу, складаються з більш дрібних підкласів. Пояс Койпера складається з класичних об'єктів і резонансних.

<u>Комети</u> – дифузне мале тіло Сонячної системи, яке складається з твердих частинок і газу. Обертається по геліоцентричній, зазвичай сильно еліптичній або навіть параболічній орбіті. Комети є нестабільним тілом з масами порядку 10¹⁸ г, середній термін життя близько 100 перигелійних проходжень.

<u>Метеороїди</u> – згідно з визначенням МАС, це твердий об'єкт, який рухається у міжпланетному просторі, розміром значно менше ніж астероїд, але значно більше ніж атом.

Окрім іншого, розглянемо сімейство малих тіл Сонячної системи, які об'єднані на підставі орбітальних параметрів. Такі сімейства отримують назву в честь першого відкритого представника сімейства. <u>Сімейство астероїдів</u> – це група астероїдів, які мають близькі орбітальні характеристики, такі, як велика піввісь, ексцентриситет і нахил орбіти. Астероїди, що входять до складу сімейства, зазвичай, є фрагментами більших астероїдів, що зіткнулися в минулому та зруйнувалися в результаті цього зіткнення. На даний момент часу відомі такі сімейства Головного поясу астероїдів: Eos, Eunomia, Flora, Hygiea, Koronis, Maria, Nysa, Themis, Vesta, Adeona, Astrid, Bower, Brasilia, Gefion, Chloris, Dora, Erigone, Hansa, Hilda, Karin, Lydia, Massalia, Meliboea, Merxia, Misa, Naëma, Nemesis, Rafita, Veritas, Theobalda та сімейства THO: Haumea, Plutino, Cubewano.

1.2 Подвійні і кратні малі тіла Сонячної системи та методи їх відкриття

Подвійне або кратне мале тіло – це система з двох або більше гравітаційно пов'язаних малих тіл Сонячної системи, які обертаються по замкнутих орбітах навколо спільного центру мас.

На 01.05.2017 відомо 300 подвійних і кратних об'єктів (Додаток А): 286 подвійних, 13 потрійних систем і шестикомпонентна система Плутона, в цілому 317 супутників малих тіл і астероїд (10199) Chariklo з системою кілець.

Ці системи включають в себе наступні об'єкти:

- 61 АЗЗ (З з двома супутниками кожний),
- 22 Марс-кроссери (1 з двома супутниками),
- 132 астероїд Головного поясу (8 з двома супутниками кожний),
- 4 троянські астероїди Юпітера, і
- 81 транснептуновий об'єкт (2 з двома супутниками, 1 з п'ятьма супутниками, не враховуючи 1 з кільцями).

З них чотири транснептунових об'єкта, які в даний час згадуються згідно конвенції IAU [90] як карликові планети: (134340) Pluto, (136108) Haumea, (136199) Eris i (136472) Makemake.

В наступній Таблиці (1.1) наведені чисельні значення за типом і способом виявлення. Космічні оптичні спостереження включають дані телескопа Hubble і космічного апарату Galileo.

Перші повідомлення про спостереження супутників астероїдів були отримані під час покриття зір астероїдами, при візуальних спостереженнях (6) Hebe в 1977 році [21] і фотометричних спостережень (532) Негсиlina в 1978 році [20], [51], [38]. Ці та аналогічні повідомлення протягом наступних років не були сприйняті в кінцевому рахунку всерйоз через відсутність підтверджень.

Таблиця 1.1.

Група	Наземні, оптичні	Космічні, оптичні	Радарні спостере- ження	Фото- метричні	Всього
	спостере- ження	спостере- ження		спостере- ження	
A33	0 (0)	0 (0)	43 (45)	18 (18)	61 (63)
Марс-кроссери	0(1)	0 (0)	0 (0)	22 (22)	22 (23)
Астероїди Головного поясу	17 (23)	4 (4)	0 (0)	111 (113)	132 (140)
Троянські астероїди Юпітера	2 (2)	0 (0)	0 (0)	2 (2)	4 (4)
Транснептунові об'єкти	14 (15)	66 (71)	0 (0)	1 (1)	81 (87)
Всього	33 (41)	70 (75)	43 (45)	154 (156)	300 (317)

Методи виявлення. Кількість систем з загальним числом супутників (в дужках)

Перше підтверджене відкриття супутника астероїда було зроблено космічним апаратом Galileo під час його обльоту астероїда (243) Іda в 1993 році [81], кілька інших були виявлені за допомогою прямого зображення з космічного телескопа Hubble і наземних телескопів з адаптивною оптикою. По кривим блиску були відкриті кілька подвійних астероїдів, що зближуються з Землею. Деякі з них були підтверджені радарними спостереженнями. Радарні спостереження також незалежно виявили деякі супутники. Першу малу планету з декількома супутниками, (87) Sylvia, було ідентифіковано в 2005 році [45]. Що стосується зовнішніх об'єктів Сонячної системи, перший супутник Плутона був виявлений в 1978 році, задовго до відкриття інших транснептунових об'єктів [42]. Подвійні транснептунові об'єкти були виявлені з 1998 року, перший 1998 WW31 [80].

Відкриті навколоземні системи астероїдів включають 7 подвійних систем типу Atens, 37 подвійних систем типу Apollo і 14 подвійних систем типу Amor, плюс потрійний Amor (153591) 2001 SN263 і потрійний Apollo (136617) 1994 CC. Ці навколоземні астероїди є близькими подвійними системами. Ймовірно, що більшість з цих подвійних малих тіл є "купою щебеню" ("rubble piles"), яка була розкручена під дією YORP ефекту, в результаті чого масове осипання призводить до формування супутника [31], [59]. Ефект Yarkovsky–O'Keefe–Radzievskii–Paddack або YORP ефект, це явище зміни швидкості обертання невеликих астероїдів неправильної форми під дією теплового випромінювання від астероїда. Багато навколоземних астероїдів мають високі швидкості обертання – близько до межі поділу (3,5 години) [104]. 29 таких об'єктів є контактними подвійними системами [39]. На поверхнях планет земної групи і Місяці знайдено велике число подвійних кратерів, утворених одночасним впливом двох об'єктів.

20 астероїдів, що зближуються із Землею перетинають орбіту Марса і один троянський астероїд Марса є подвійними. Також відомий один астероїд типу Марс-кроссер є потрійною системою.

Супутники астероїдів в Головному поясі, що виявлені на сьогоднішній день, показують більш широке розмаїття як з точки зору відстаней між компонентами, так і з точки зору відносних розмірів. Деякі з них можуть бути фрагментами від

зіткнень, які були взаємно захоплені одне одним. Єдина система розглянута крупним планом є (243) Іda і Dactyl. Зображення з космічного апарату Galileo показали неправильну форму для (243) Іda, звідки випливає, що це не просто "купа щебеню" [81]. У 2005 році було оголошено, що (87) Sylvia має другий супутник – це перша відкрита потрійна астероїдна система [45]. Ймовірно, такі системи були створені як результат руйнування від зіткнення. З Головного пояса 18 подвійних астероїдів входять в сімейство Hungaria. Багато з невеликих подвійних астероїдів сформовані в результаті дії YORP ефекту.

Перший підтверджений подвійний троянський астероїд (617) Patroclus, складається з компонентів, схожих за розміром [40]. У другого ідентифікованого подвійного астероїда, (624) Hektor, головний компонент більше вторинного і система є контактною [84].

Серед 2504 відомих транснептунів і кентаврів: 78 подвійних, 2 потрійних, та шестикомпонентна система (134340) Pluto. Перший супутник виявлений в грудні 2000 року у астероїда 1998WW31. Велика частина (46 з 80) відомих транснептунових систем є Cubewanos. Cubewanos – це класичні об'єкти поясу Койпера, орбіта яких розташована за орбітою Нептуна і не знаходиться з ним в явно вираженому орбітальному резонансі. Велика піввісь орбіт класичних об'єктів пояса Койпера знаходиться в діапазоні 40-50 а.о., і, на відміну від (134340) Pluto, вони не перетинають площину орбіти Нептуна та знаходяться на орбітах з невеликим ексцентриситетом. Два з них є кентаврами: (42355) Typhon i (65489) Ceto.

Багато з виявлених подвійних малих тіл розташовані один від одного на більших відстанях, ніж компоненти системи Pluto – Charon. Було висловлено припущення, що варіації кривої блиску деяких транснептунів можна пояснити присутністю близького супутника [20], [51], [38]. У 2014 році відкрили два вузьких кільця навколо (10199) Chariklo [11]. Вид цих кілець говорить про те, що з великою ймовірністю в системі присутній супутник пастух. Передбачається, що системи (134340) Pluto і (136108) Наитеа утворені в результаті зіткнень як результат руйнуванні їх батьківських тіл.

1.3 Спостереження малих тіл Сонячної системи на телескопі ОМТ-800

Протягом близько 60 років на астрономічній станції Маяки НДІ "Астрономічна обсерваторія" Одеського національного університету імені І.І. Мечникова, проводились патрульні спостереження неба. Станція розташована на відстані 40 км на захід від Одеси (географічні координати: $\varphi = 46.39679$ град. північної широти і $\lambda = 30.27274$ град. східної довготи, код спостережної станції в Центрі малих планет (MPC) 583 Odessa-Mayaki).

Станція є досить відоме місце, тому що там зберігається третя в світі за кількістю колекція астрономічних негативів. Вона складається з близько 100000 астрофотоплатівок, отриманих на цій станції в період 1957-1998 рр за допомогою 7-ми камерного астрографа. Крім того, там заберігається колекція близько 10000 астрофотоплатівок, отриманих в 1908-1953 рр в Симеїзській обсерваторії.

Ця станція була побудована в ході підготовки до Міжнародного Геофізичного року в 1957 р. За період роботи станції, для моніторингу неба використовувалося багато різних інструментів. Серед них телескоп системи Річі-Кретьєна з діаметром головного дзеркала 600 мм (RC-600, період з 2006-2012 роки), і Одеський Багатофункціональний телескоп ОМТ-800 (діаметр дзеркала 800 мм, введений в експлуатацію в 2013 році, працює по сьогодняшній день) [3].

Маючи докладні записи, зроблені спостерігачами в журналі кожного інструменту, можна отримати корисну інформацію про кількість спостережних ночей на Маякській астрономічній станції.

Вважається, що спостережна ніч, це та, коли згідно журналів спостережень проводилися спостереження будь-якої тривалості. Іншими словами, навіть мала частина ночі, охоплена спостереженнями розглядається як спостережна ніч. Ніч не вважається спостережною коли ні один телескоп на спостережній станції не отримував спостережень, в тому числі через технічні причини або через відсутність спостерігачів на телескопах.

Рис. 1.1. Річна кількість спостережних ночей за журналами спостережень 7-камерного астрографа Одеської обсерваторії

Статистику спостережень на 7-камерному астрографі наведено на Рис. 1.1.

Починаючи з 1991 року, можна відзначити низьку ефективність 7-ми камерного астрографа. Це не було пов'язано зі зміною погодних умов. Основна проблема була в складній економічній ситуації в Україні на той час.

Телескоп системи Річі-Кретьєна RC-600 почав надавати значні астрономічні дані в квітні 2006 року. В 2012 році був демонтований для реконструкції.

Слід зазначити, що число ясних ночей, підрахованих по записам на різних телескопах і в рамках різних програм спостережень може відрізнятися місяць від місяця. Наприклад, спостереження не проводилися на 7-ми камерному астрографі в ясні ночі протягом повного Місяця. У той же час спостереження на RC-600 і ОМТ-800 проводилися навіть в напів'ясні ночі і в ночі з досить поганою прозорістю атмосфери.

З початком роботи в кінці 2012 року нового телескопа ОМТ-800 (0.8 м f/2.67 рефлектор з коректором + CCD) (Рис. 1.2), на спостережній станції Маяки НДІ "Астрономічна обсерваторія" Одеського національного університету імені І.І. Мечникова з'явилася можливість отримання високоточних диференціальних

астрометричних спостережень геостаціонарних об'єктів, астероїдів і комет, яскравіше 21 інтегральної зоряної величини [72], [73].

Конструкція телескопа і його можливості докладно описані в статті [3].

На сьогоднішній день позиційні спостереження слабких об'єктів Сонячної системи є актуальними в зв'язку з необхідністю наземної підтримки космічних спостережень цих об'єктів, а також пошуку та обліку космічного сміття.

Для телескопа ОМТ-800, з огляду на його значну світлосилу, неможливі тривалі експозиції, оскільки, при експозиціях більше 30 секунд, слабкі об'єкти починають зливатися з фоном неба. Експериментально підібрано оптимальне значення експозиції 10-20 секунд (в залежності від наявності Місяця і стану атмосфери). Спостереження слабких об'єктів проводяться серіями по 5-15 послідовних експозицій. Результатом одиничного спостереження є монохромне 16-бітне зображення розміром 3056×3056 пікселів, збережене в форматі FITS. Типовий приклад такого зображення наведено на Рис. 1.3.

Для підвищення граничної зоряної величини спостережуваних об'єктів, а також для астрометричних редукцій зображень і отримання диференціальних екваторіальних координат спостережуваних об'єктів нами застосований програмний пакет CoLiTec [62], люб'язно наданий нам його розробниками. Зазначений пакет дозволяє виконувати корекцію кадрів будь-якого розміру з застосуванням медіанного фільтра і Фур'є-аналізу по яскравості, виконувати автоматичне калібрування і корекцію шляхом видалення "битих" і "гарячих" пікселів. Також є функція врахування віньєтування поля зору, коми, можливих збоїв добового ведення, сторонніх засвічень (в тому числі від Місяця, яскравих зір та планет), дифракційних променів. Характерний результат обробки одиничного кадру пакетом наведено на Рис. 1.4. В якості початкового кадру взятий кадр, наведений на Рис. 1.3.

Застосування функціоналу складання кадрів, реалізованого в програмному пакеті CoLiTec, дозволило нам збільшити проникну здатність телескопа з 19^m до 21^m, що видно на Рис. 1.4 і Рис. 1.5.

Рис. 1.2. Телескоп ОМТ-800, код спостережної станції по IAU Minor Planet Center [583 – Odessa-Mayaki]

Експериментальне тестування показало, що для отримання найкращих астрометричних спостережень необхідно отримувати як мінімум три серії по вісім кадрів. Використання восьми кадрів в серії та програмний пакет CoLiTec дозволяє отримувати так звані "суперкадри" з гарним співвідношенням сигнал-шум, а три "суперкадри", рознесені за часом, необхідні для визначення первинної орбіти об'єкта, що спостерігається.

Після отримання "суперкадрів" за допомогою програмного пакета CoLiTec в автоматичному режимі виконується пошук на кадрі як відомих астероїдів, так і невідомих об'єктів. Така можливість робить програмний пакет CoLiTec корисним інструментом для пошуку нових об'єктів та обробки оглядових спостережень неба. Результати спостережень задовольняють вимогам до точності, що пред'являються Minor Planet Center [91] і публікуються в щомісячних рапортах [92].

Відправлені дані використовуються для уточнення Кеплерових елементів орбіт астероїдів, які в свою чергу необхідні нам для побудови чисельної моделі руху астероїдів в Сонячній системі. Кеплерові елементи – шість незалежних елементів орбіти, що визначають положення небесного тіла в просторі в наближенні задачі двох тіл [19]: велика піввісь, ексцентриситет, нахил, довгота висхідного вузла, аргумент перигелію, середня аномалія.

В ніч з 3 на 4 січня 2017 року був знайдений (V. Kashuba, V. Troianskyi) [MPS 757613] невідомий об'єкт. Отримані спостереження були використані для побудови первинної орбіти об'єкта методом Väisälä, реалізованим програмно автором дисертації. Невідомий об'єкт був ідентифікований, як астероїд Головного поясу.

Метод Väisälä [79], відрізняється винятковою простотою формул які застосовуються. Він широко використовується на практиці в разі, коли є дуже коротка дуга спостережень, яка не достатня, щоб визначити орбіту класичними методами і передбачити позицію об'єкта протягом наступного тижня або близько того. Так само, метод дозволяє отримати досить якісну первинну орбіту для подальшого уточнення одним з ітераційних методів.

Класичний метод Väisälä передбачає, що є два спостереження об'єкта в момент часу t_1 і t_2 . Väisälä орбіта є такою, що задовольняє обидві точки спостереження і при цьому об'єкт знаходиться на осі апсид в момент часу t_2 , в перигелії або афелії своєї орбіти. З точки зору математики, це виглядає наступним чином:

→

$$\frac{dr_2}{dt_2} = 0. \tag{1.1}$$

Суть методу Väisälä, полягає тому, що по двом близьким спостереженням $(t_1, \alpha_1, \delta_1, t_2, \alpha_2, \delta_2)$ знаходиться первинна орбіта. При цьому геоцентрична відстань ρ_2 підбирається так, щоб була справедлива нерівність:

$$0 < a - r_2 < 0.5. \tag{1.2}$$

Запишемо вираз для пошуку геоцентричних прямокутних координат світила [79]:

$$\begin{cases} x_2 = \Delta_2 \cos \alpha_2 - X_2, \\ y_2 = \Delta_2 \sin \alpha_2 - Y_2, \\ z_2 = \Delta_2 tg \delta_2 - Z_2, \end{cases}$$
(1.3)

де $\Delta_2 = \rho_2 \cos \delta_2$. Таким чином ми знайдем r_2 .

Геоцентричні компоненти швидкості (*v*₂) запишемо в наступному вигляді [79]:

$$\begin{cases} \dot{x}_{2} = \frac{\Delta_{1} \cos \alpha_{1} - F_{1} x_{2} - X_{1}}{G_{1}}, \\ \dot{y}_{2} = \frac{\Delta_{1} \sin \alpha_{1} - F_{1} y_{2} - Y_{1}}{G_{1}}, \\ \dot{z}_{2} = \frac{\Delta_{1} t g \alpha_{1} - F_{1} z_{2} - Z_{1}}{G_{1}}, \end{cases}$$
(1.4)

$$\exists e \quad \Delta_1 = \frac{F_1 r_2 + X_1 x_1 + Y_1 y_1 + Z_1 z_1}{x_2 \cos \alpha_1 + y_2 \sin \alpha_1 + z_2 t g \delta_1}, \quad F_1 = 1 - A \tau^2, \quad G_1 = \tau - B \tau^3, \quad A = \frac{1}{2} r^3, \quad B = \frac{A}{3},$$

 $\tau = Gm(t_1 - t_2)$ — модифікований час між спостереженнями. Таким чином ми знайшли v_2 .

Отримані результати $(x_2, y_2, z_2, \dot{x}_2, \dot{y}_2, \dot{z}_2)$ використовуються для пошуку Кеплерових елементів орбіти світила на момент часу t_2 .

Всі орбіти, розраховані, починаючи з 1935 року на обсерваторії Turku, були отримані цим методом. Під керівництвом Väisälä обсерваторії Turku [93] і Tuorla [94] успішно займалися пошуком комет і астероїдів. В цілому його групою було відкрито 7 комет і 807 астероїдів.

Рис. 1.3. Кадр до обробки, 10 секунд експозиція

Даний метод активно використовується для пошуку первинної орбіти малих тіл Сонячної системи на короткій дузі спостережень в IAU Minor Planet Center.

Невідомий об'єкт, що було знайдено за спостереженнями, що проводились в ніч з 3 на 4 січня 2017 року, після побудови орбіти повторно виявлений 26 січня 2017 року. В IAU Minor Planet Center астероїду присвоєна назва 2017 AB8. Далі орбіта була пов'язана з астероїдом 2014 OD380. Астероїд 2014 OD380 вперше спостерігали в обсерваторії Pan-STARRS 1, Haleakala [95] в 2014 році. Далі, було кілька вдалих, не пов'язаних між собою спостережень даного астероїда в 2015 році, після кожного з яких він губився зважаючи на недостатню для побудови пошукової ефемериди кількість і тривалість періоду спостережень.

Рис. 1.4. Кадр після обробки, 10 секунд експозиція

20 січня 2017 року був знайдений (V. Kashuba, V. Troianskyi) [MPS 766258], ще один невідомий об'єкт, який був ідентифікований, як астероїд із групи АЗЗ.

Спираючись на отриманні спостереження після побудови первинної орбіти об'єкта методом Väisälä невідомий об'єкт повторно знайдено 31 січня 2017 року. В IAU Minor Planet Center астероїду присвоєно назва 2017 ВС94.

В результаті за період 2014 - 2017 роки отримано 32 результативні спостережні ночі. За цей період спостерігалися 3 подвійні астероїди ((32039) 2000 JO23, (66391) 1999 KW4, (276049) 2002 CE26), 9 ненумерованих об'єктів (2014 XJ3, 2015 AZ43, 2015 BO510, 2015 JY1, 2010 VP219, 2016 SG31, 2016 YP9, 2017 AB8, 2017 BC94), та приблизно 160 нумерованих. Загальна кількість отриманих

астрометричних спостережень (точок) біля 1800 [10].

Рис. 1.5. "Суперкадр" із 8-ми кадрів з 10 секундною експозицією

Короткі висновки до Розділу 1

У Розділі 1 викладені основні положення сучасного уявлення про групи і родини астероїдів. Наведено визначення малої планети і подвійної або кратної малої планети Сонячної системи. Показано кількість і перелічені методи відкриття супутників астероїдів. Наведено список досліджуваних об'єктів. Викладено нові особливості спостережень астероїдів на телескопі ОМТ-800 та отримання їх орбіт.
РОЗДІЛ 2. ДИНАМІЧНА МОДЕЛЬ АСТЕРОЇДНОЇ СИСТЕМИ

2.1 Рівняння руху

Розглянемо задачу *N* тіл (Рис. 2.1.) в формулюванні Ньютона [19]. Нехай \overrightarrow{r}_i з компонентами x_i , y_i , z_i визначає положення точки m_i відносно початку системи відліку. Сила тяжіння, яку відчуває точка m_i зі сторони точки m_j , по величині дорівнює $Gm_i m_j / r_{ij}^2$, а по напрямку збігається з вектором $\overrightarrow{r}_j - \overrightarrow{r}_i$. Сили,

діючі з боку всіх точок m_j на масу m_i , будуть дорівнювати $Gm_i \sum_{j=1}^{n'} m_j \frac{r_j - r_i}{r_{ij}^3}$ і тому:

$$\vec{m_i r_i} = G \sum_{j=1}^{n'} m_i m_j \frac{r_j - r_i}{r_{ij}^3}, \qquad (2.1)$$

відмітимо, що $\vec{r}_j - \vec{r}_i = \vec{r}_{ij}$ (в координатах: $\vec{r}_{ij}(x_j - x_i, y_j - y_i, z_j - z_i)$), тоді

$$\vec{m_i r_i} = G \sum_{j=1}^{n'} m_i m_j \frac{r_{ij}}{r_{ij}^3}.$$
(2.2)

Система рівнянь (2.2), виходить з прирівнювання виразів для закону всесвітнього тяжіння і II закону Ньютона. Штрих над знаком підсумовування означає пропуск значень, коли i = j.

У проекціях на осі координат:

$$m_{i} \overset{\cdots}{x_{i}} = -G \sum_{j=1}^{n'} m_{i} m_{j} \frac{x_{i} - x_{j}}{r_{ij}^{3}},$$

$$m_{i} \overset{\cdots}{y_{i}} = -G \sum_{j=1}^{n'} m_{i} m_{j} \frac{y_{i} - y_{j}}{r_{ij}^{3}},$$

$$m_{i} \overset{\cdots}{z_{i}} = -G \sum_{j=1}^{n'} m_{i} m_{j} \frac{z_{i} - z_{j}}{r_{ij}^{3}}.$$
(2.3)

Рис. 2.1. Розташування матеріальних точок в задачі N тіл

Маємо 3N диференціальних рівнянь 2-го порядку. Для вирішення цієї системи треба мати 6N початкових умов $(x_i, \dot{x}_i, y_i, \dot{y}_i, z_i, \dot{z}_i)$, відповідно, 6N інтегралів руху.

Задачу N тіл, звичайно, можна вирішувати (інтегрувати) чисельно.

Інтегрування диференціальних рівнянь руху в задачі N тіл. В цій задачі відомо десять інтегралів руху. Сума рівнянь (2.3) дає

$$\begin{cases} \sum_{i=1}^{n} m_{i} \cdot x_{i} = 0, \\ \sum_{i=1}^{n} m_{i} \cdot y_{i} = 0, \\ \sum_{i=1}^{n} m_{i} \cdot z_{i} = 0. \end{cases}$$
(2.4)

Така система легко інтегрусться:

$$\begin{cases} \sum_{i=1}^{n} m_{i} \dot{x}_{i} = c_{1}, \\ \sum_{i=1}^{n} m_{i} \dot{y}_{i} = c_{2}, \qquad \Rightarrow \qquad \sum_{i=1}^{n} m_{i} \dot{r}_{i} = \dot{c}, \\ \sum_{i=1}^{n} m_{i} \dot{z}_{i} = c_{3}, \end{cases}$$
(2.5)

і другий раз:

$$\begin{cases} \sum_{i=1}^{n} m_{i} x_{i} = c_{1}t + c_{4}, \\ \sum_{i=1}^{n} m_{i} y_{i} = c_{2}t + c_{5}, \qquad \Rightarrow \qquad \sum_{i=1}^{n} m_{i} \overrightarrow{r}_{i} = \overrightarrow{c} t + \overrightarrow{c'}. \end{cases}$$

$$(2.6)$$

$$\sum_{i=1}^{n} m_{i} z_{i} = c_{3}t + c_{6},$$

Рівності (2.5) і (2.6) виражають закон збереження імпульсу. Їх ще називають інтегралами руху центру мас.

*c*₁, *c*₂, *c*₃, *c*₄, *c*₅, *c*₆ – постійні інтегрування. Їх значення визначаються початковими умовами і суттєво залежать від вибору системи координат.

Інтеграли збереження моменту імпульсу. Повернемося до рівнянь руху у вигляді (2.2). Після множення лівої і правої частини векторно на $\vec{r_i}$ і підсумовування по *i* [19]:

$$\sum_{i=1}^{n} m_i \begin{bmatrix} \overrightarrow{r}, & \overrightarrow{r}, \\ r_i \times r_i \end{bmatrix} = k^2 \sum_{i=1}^{n} \sum_{j=1}^{n} \frac{m_i m_j}{r_{ij}^3} \begin{bmatrix} \overrightarrow{r}, & \overrightarrow{r}, \\ r_i \times r_{ij} \end{bmatrix}.$$
(2.7)

Сума справа дорівнює нулю за будовую, тобто:

$$\sum_{i=1}^{n} m_i \begin{bmatrix} \overrightarrow{r}_i \times \overrightarrow{r}_i \\ \overrightarrow{r}_i \times \overrightarrow{r}_i \end{bmatrix} = 0.$$
(2.8)

Отримане рівняння можливо проінтегрувати:

$$\frac{d}{dt} \left\{ \sum_{i=1}^{n} m_i \begin{bmatrix} \overrightarrow{r_i} \times \overrightarrow{r_i} \\ \overrightarrow{r_i} \times \overrightarrow{r_i} \end{bmatrix} \right\} = \sum_{i=1}^{n} m_i \begin{bmatrix} \overrightarrow{r_i} \times \overrightarrow{r_i} \\ \overrightarrow{r_i} \times \overrightarrow{r_i} \end{bmatrix} = 0,$$
(2.9)

$$\sum_{i=1}^{n} m_i \begin{bmatrix} \overrightarrow{r_i} \times \overrightarrow{r_i} \\ \overrightarrow{r_i} \times \overrightarrow{r_i} \end{bmatrix} = \overrightarrow{c} .$$
(2.10)

В координатах:

$$\begin{cases} \sum_{i=1}^{n} m_{i} (y_{i} z_{i} - y_{i} z_{i}) = c_{7}, \\ \sum_{i=1}^{n} m_{i} (z_{i} x_{i} - z_{i} x_{i}) = c_{8}, \\ \sum_{i=1}^{n} m_{i} (x_{i} y_{i} - x_{i} y_{i}) = c_{9}. \end{cases}$$
(2.11)

Ці три інтеграла є закон збереження сумарного моменту імпульсу (моменту кількості руху) системи.

Зауваження про силову функцію. Повернемося до рівнянь руху (2.3):

Цій системі можна надати просту форму шляхом введення силової (або потенційної) функції.

Сконструюємо функцію, частинні похідні якої за відповідними координатами збігаються з правими частинами рівнянь руху (2.3). Це і буде силова функція [19]:

$$U = G \sum_{i=1}^{n'} \sum_{j=1}^{n'} \frac{m_i m_j}{r_{ij}}.$$
 (2.12)

Отже:

$$\begin{cases} m_i \frac{d^2 x_i}{d t^2} = \frac{\partial U}{\partial x_i}, \\ m_i \frac{d^2 y_i}{d t^2} = \frac{\partial U}{\partial y_i}, \\ m_i \frac{d^2 z_i}{d t^2} = \frac{\partial U}{\partial z_i}. \end{cases}$$
(2.13)

(2.35) теж рівняння руху, записані з використанням силової функції.

Важливі властивості силової функції: *U* не залежить від вибору системи координат, так як в неї входять лише різниці координат; *U* не залежить від часу явно.

Інтеграл енергії. Оскільки силова функція – однозначна, та не залежить від часу, тому розглянута система консервативна, в ній повинна зберігатися механічна енергія.

Кінетична енергія системи [19]:

$$T = \sum_{i=1}^{n} \frac{m_{i} \dot{r_{i}^{2}}}{2} = \sum_{i=1}^{n} \frac{m_{i} (x_{i}^{2} + y_{i}^{2} + z_{i}^{2})}{2}, \qquad (2.14)$$
$$\frac{d}{dt} T = \frac{1}{2} \sum_{i=1}^{n} m_{i} (2 x_{i} x_{i} + 2 y_{i} y_{i} + 2 z_{i} z_{i}) =$$
$$= \sum_{i=1}^{n} (m_{i} x_{i} x_{i} + m_{i} y_{i} y_{i} + m_{i} z_{i} z_{i}) = \sum_{i=1}^{n} \left(\frac{\partial U}{\partial x_{i}} \cdot x_{i} + \frac{\partial U}{\partial y_{i}} \cdot y_{i} + \frac{\partial U}{\partial z_{i}} \cdot z_{i} \right), \qquad (2.15)$$

так як U явно від часу не залежить, то:

$$\sum_{i=1}^{n} \left(\frac{\partial U}{\partial x_{i}} \frac{\partial x_{i}}{\partial t} + \frac{\partial U}{\partial y_{i}} \frac{\partial y_{i}}{\partial t} + \frac{\partial U}{\partial z_{i}} \frac{\partial z_{i}}{\partial t} \right) = \frac{dU}{dt}$$
(2.16)

– повна похідна.

Отже:

$$\frac{d}{dt}T = \frac{dU}{dt},$$
(2.17)

тобто:

$$T - U = c_{10} \tag{2.18}$$

Формула (2.18) виражає теорему: в замкнутій системі *N* тіл сума кінетичної і потенційної енергій постійна.

З 6N інтегралів, необхідних для повного розв'язання задачі, отримано 10 (6 інтегралів руху центру мас ((2.5) і (2.6)), З інтеграла збереження моменту

імпульсу або інтеграли площ (2.11), інтеграл енергії (2.18)). Інші інтеграли для загального випадку *N* тіл невідомі.

2.2 Врахування асиметрії компонентів астероїдної системи

Останнім часом стало можливим досить точне визначення фізичних і геометричних характеристик астероїдних систем за допомогою радіолокаційних та фотометричних спостережень [87], що дозволило розрахувати асиметрію масивного компонента подвійних і кратних астероїдів для подальшого вивчення динаміки руху їх супутників.

Якщо в нульовому наближенні інтерпретувати гравітаційне поле астероїда як гравітаційне поле кулі з симетрично розподіленою густиною, тоді його гравітаційний потенціал *U* має виключно простий вигляд:

$$U = \frac{Gm}{r},\tag{2.19}$$

де *r* – відстань від центру кулі. Якщо форма тіла є несферичною, то гравітаційний потенціал можна апроксимувати за допомогою суми ряду. Одним з варіантів представлення гравітаційного потенціалу є його розкладання по сферичним функціям [2]. Застосування сферичних функцій дає просту і зручну для практичного застосування аналітичну формулу для потенціалу.

Загальний підхід для моделювання гравітаційного поля планетарного тіла через сферичне гармонічне представлення:

$$U = \frac{Gm}{r} \sum_{\ell=0}^{\infty} \left(\frac{a_e}{r}\right)^{\ell} \sum_{k=0}^{\ell} P_{\ell,k} (\sin\phi) \Big[C_{\ell,k} \cos k\lambda + S_{\ell,k} \sin k\lambda \Big], \qquad (2.20)$$

де r – відстань від центру мас тіла, a_e – середній екваторіальний радіус тіла, що притягує, $C_{\ell,k}$, $S_{\ell,k}$. – коефіцієнти розкладання гравітаційного поля, r, φ, λ –

координати в сферичній системі відліку об'єкта в гравітаційному полі центрального тіла, $P_{\ell,k}$ – приєднані функції Лежандра.

Таке представлення гравітаційного потенціалу можна розглядати як три складових частин:

$$U = U_0 + U_1 + U_2. (2.21)$$

Перша частина просто провідний член розкладання. Приєднана функція Лежандра, P_{00} приймає значення одиниця, як це робить коефіцієнт C_{00} . Таким чином, головний член просто:

$$U_0 = \frac{Gm}{r}.$$
(2.22)

Це потенціал тіла точкової маси, який використовуються для отримання основних результатів руху в задачі двох тіл.

Друга частина сферичного гармонічного подання є такими внесками (крім зазначеного внеску в задачі двох тіл), які не мають залежності від довготи. Такі умови, відповідають k = 0 і позначаються як зональний внесок в потенціал:

$$U_{1} = \frac{Gm}{r} \sum_{\ell=1}^{\infty} \left(\frac{a_{e}}{r}\right)^{\ell} P_{\ell,0}(\sin\phi) C_{\ell,0}.$$
 (2.23)

В моделі, друга зональна гармоніка, це вклад від планетного сплющення. Він є другим за величиною, після вкладу в загальний потенціал центрального тіла. Перша гармоніка дорівнює нулю, за умов, що центр нерухомої системи координат збігається з центром мас планети. Позначення J_{ℓ} часто використовується для позначення зональних коефіцієнтів замість зазначених вище $C_{\ell,0}$. Два позначення, просто відрізняються знаком:

$$J_{\ell} = -C_{\ell,0}, \qquad (2.24)$$

так, що загальна частина потенціалу також може бути записана у вигляді:

$$U_1 = -\frac{Gm}{r} \sum_{\ell=1}^{\infty} \left(\frac{a_e}{r}\right)^{\ell} P_{\ell,0}(\sin\phi) J_{\ell}.$$
(2.25)

Частина сферичного гармонічного представлення що залишилася, є залежною від довготи:

$$U_{2} = \frac{Gm}{r} \sum_{\ell=1}^{\infty} \left(\frac{a_{e}}{r}\right)^{\ell} \sum_{k=1}^{\ell} P_{\ell,k}(\sin\phi) \left[C_{\ell,k}\cos k\lambda + S_{\ell,k}\sin k\lambda\right].$$
(2.26)

Найбільший внесок в поздовжньому потенціалі, як правило, вклад 2-го порядку і близько 2-го. Ці вклади є частиною потенціалу, у випадку коли форма планети відхиляється від сферичної навколо екваторіальної області. Як і в разі зонального коефіцієнта ступеня 1, коефіцієнти ступеня 1 і близько 1 будуть дорівнювати нулю за умови, що центр системи координат збігається з центром мас.

Тепер гармонічне представлення гравітаційного потенціалу можемо записати в наступному вигляді [2]:

$$U = \frac{Gm}{r} + \frac{Gm}{r} \sum_{\ell=1}^{\infty} \left(\frac{a_e}{r}\right)^{\ell} P_{\ell,0}(\sin\phi) C_{\ell,0}.$$

$$+ \frac{Gm}{r} \sum_{\ell=1}^{\infty} \left(\frac{a_e}{r}\right)^{\ell} \sum_{k=1}^{\ell} P_{\ell,k}(\sin\phi) \left[C_{\ell,k}\cos k\lambda + S_{\ell,k}\sin k\lambda\right].$$
(2.27)

У загальному випадку, коли існують тимчасові варіації потенціалу (припливи), сферичне гармонічне представлення залишається в силі, хоча при цьому, коефіцієнти $C_{\ell,k}$, $S_{\ell,k}$ залежать від часу.

Сферичні гармоніки. Для того, щоб краще зрозуміти корисність сферичного гармонічного представлення геопотенціалу, потрібно більш детально розглянути сферичні гармонічні функції. Сферичні гармонічні функції утворені приєднаними функціями Лежандра з $\cos k\lambda$ і $\sin k\lambda$ які розв'язуються в рівнянні (2.20):

$$\begin{cases} A_{\ell,k}(\phi,\lambda) = P_{\ell,k}(\sin\phi)\cos k\lambda, \\ B_{\ell,k}(\phi,\lambda) = P_{\ell,k}(\sin\phi)\sin k\lambda. \end{cases}$$
(2.28)

Ці функції ортогональні. Таким чином, кожну функцію (при заданому ступені і порядку) можна розглядати в якості внеску незалежної інформації з амплітудою, заданою їх відповідними коефіцієнтами $C_{\ell,k}$, $S_{\ell,k}$.

На додаток до ортогональної, якісні форми сферичних гармонік легко візуалізувати. Зональні гармоніки (відповідні k = 0) не мають довготної залежності і мають k нулів між ±90 градусами за широтою.

Всі незональні гармоніки мають поздовжні коливання. Присутність $\cos k\lambda$ і $\sin k\lambda$ дають значення ноль функції 2k по довготі. І функція Лежандра ступеню ℓ – k по широті є нульова. Так що, схожа на зональні, чим вище ступінь і порядок гармоніки тим більш тоншу і тоншу просторову структуру являє собою потенціал. Незональні коефіцієнти називаються тисеральними і для конкретного випадку ℓ = k вони називаються секторіальними.

Як правило, сферичні гармоніки можна розглядати так, як представляють варіації гравітаційного потенціалу, які мають довжини хвиль — окружності планети, розділену на k частин по довготі і поділеній на $\ell - k$ частин по широті.

Нормалізація. Коефіцієнти сферичних гармонік з'являються в рівнянні (2.48) і є ненормовані. Ці коефіцієнти, як правило, дуже малі за значенням в сторону збільшення ступеня. Це є наслідком того, що функції Лежандра, як правило, зростають до великих значень, при збільшенні ступеня. Таким чином, є сенс виконати нормалізацію приєднаних функцій Лежандра та коефіцієнтів. Нормалізація досягається шляхом множення приєднаних функцій Лежандра на масштабний коефіцієнт в залежності від ступеня і порядку функції. Позначаючи нормовані значення, межею зверху, нормовані приєднані функції Лежандра [2]:

$$\overline{P}_{\ell,k} = \left[2 - \delta_{k0} \quad 2\ell + 1 \quad \frac{\ell - k !}{\ell + k !} \right]^{1/2} P_{\ell,k}, \qquad (2.29)$$

де δ_{k0} – символ Кронекера, дорівнює один, якщо k дорівнює нулю і дорівнює нулю, якщо k більше нуля. Зворотні нормовані коефіцієнти гравітаційного потенціалу $C_{\ell,k}$, $S_{\ell,k}$ це масштабний фактор:

$$\left\{ \frac{\overline{C}_{\ell,k}}{\overline{S}_{\ell,k}} \right\} = \left[\frac{1}{2 - \delta_{k0}} \frac{\ell - k !}{2\ell + 1} \frac{\ell - k !}{\ell + k !} \right]^{-1/2} \left\{ \frac{C_{\ell,k}}{S_{\ell,k}} \right\}.$$
(2.30)

Тепер гравітаційний потенціал, в розкладенні по сферичним гармонікам (2.20) з використанням нормованих величин, можемо записати в наступному вигляді:

$$U = \frac{Gm}{r} \sum_{\ell=0}^{\infty} \left(\frac{a_e}{r}\right)^{\ell} \sum_{k=0}^{\ell} \overline{P}_{\ell,k} \left(\sin\phi\right) \left[\overline{C}_{\ell,k}\cos k\lambda + \overline{S}_{\ell,k}\sin k\lambda\right].$$
(2.31)

Як правило, це кращий вигляд для чисельних реалізацій сферичного гармонічного представлення. Для багатьох аналітичних розглядів (таких, як вплив при орбітальному русі), легше працювати з ненормованою формою (2.27).

Приєднані функції Лежандра. Оцінка сферичних гармонік вимагає оцінки функцій Лежандра. Їх оцінку найбільш зручно проводити за допомогою рекурентних співвідношень. В приєднаних функціях Лежандра ℓ – ступінь, k – порядок [2]:

$$P_{\ell,k} \quad x = \frac{1 - x^{2^{-k/2}}}{2^{\ell}} \sum_{h=0}^{\frac{\ell-k}{2}} -1^{-h} \frac{2\ell - 2h !}{h! \ \ell - h ! \ \ell - k - 2h !} x^{\ell-k-2h}.$$
(2.32)

Рекурентні співвідношення для оцінки цих функцій, як правило, представляюсь в одній з двох форм. Будь який підхід дозволяє обчислити всі необхідні функції Лежандра, які легко обчислюються за формулами:

$$P_{\ell,\ell} \quad x = \frac{2\ell - 1!}{2^{\ell-1} \ell - 1!} 1 - x^{2}^{\ell/2}, \qquad (2.33)$$

$$P_{\ell,\ell-1} \quad x = \frac{x}{1-x^{2}} P_{\ell,\ell} \quad x \quad .$$
(2.34)

Перша рекурсія застосовується для обчислення $P_{\ell,\ell}$ x, $P_{\ell,\ell-1}$ x, а потім обчислюються функції для усіх нижчих порядків ступеня, використовуючи:

$$P_{\ell,\ell} \quad x = \frac{1}{\ell - k \quad \ell - k + 1} \left[2 \quad k + 1 \quad \frac{x}{1 - x^2} P_{\ell,k+1} \quad x \quad -P_{\ell,k+2} \quad x \right]$$
(2.35)

Альтернативне обчислення рекурентної функції для $P_{\ell,\ell}$ x , $P_{\ell,\ell-1}$ x :

$$P_{\ell,\ell} \quad x = \frac{1}{\ell - k} \Big[2 \ \ell - 1 \ x P_{\ell-1,k} \quad x - \ell + k - 1 \ P_{\ell-2,k} \quad x \Big]. \tag{2.36}$$

Рекурентні співвідношення також можна переписати безпосередньо через нормовані приєднані функції Лежандра:

$$\overline{P}_{\ell,k}^{*} \quad x = 2 \quad k+1 \left[\frac{1}{\ell+k+1} \quad \ell-k \right]^{1/2} \frac{x}{1-x^{2}} \overline{P}_{\ell,k+1}^{*} \quad x \quad -\left[\frac{\ell+k+2}{\ell+k+1} \quad \ell-k \right]^{1/2} \overline{P}_{\ell,k+2}^{*} \quad x \quad .$$
(2.37)

де $\overline{P}_{\ell,k} = \overline{P}_{\ell,k}^*$ якщо k > 0 і $\overline{P}_{\ell,0} = \frac{1}{\sqrt{2}} \overline{P}_{\ell,0}^*$ якщо k = 0.

Рекурентна фінкція еквівалентна рівнянню (2.35) у нормованому вигляді:

$$\overline{P}_{\ell,k} \quad x = \left[\frac{2\ell - 1 \quad 2\ell + 1}{\ell - k \quad \ell + k}\right]^{1/2} x \overline{P}_{\ell-1,k} \quad x = \left[\frac{2\ell + 1 \quad \ell + k - 1}{2\ell - 3 \quad \ell + k \quad \ell - k}\right]^{1/2} \overline{P}_{\ell-2,k} \quad x \quad (2.38)$$

Гравітаційне прискорення. Гравітаційне прискорення в будь-якому місці отримують шляхом обчислення градієнта потенціалу. Оскільки потенціал задається як функція від нерухомих сферичних координат, найбільш зручно обчислювати градієнт в тій же системі. У сферичних координатах, цей градієнт має вигляд [2]:

$$\vec{a} = \nabla U = \frac{\partial U}{\partial r}\vec{u}_r + \frac{1}{r}\frac{\partial U}{\partial \phi}\vec{u}_{\phi} + \frac{1}{r\cos\phi}\frac{\partial U}{\partial \lambda}\vec{u}_{\lambda}, \qquad (2.39)$$

де $u_r, u_{\phi}, u_{\lambda}$ одиничні вектори базису r, ϕ, λ . Вектор прискорення, отриманий з цього виразу буде інерційним прискоренням матеріальної точки. Для більшості додатків буде бажано мати компоненти прискорення, виражені в інерціальній системі координат. Це досягається шляхом застосування відповідного перетворення координат від сферичних координат до бажаної системи координат. Підставляючи в гравітаційний потенціал (2.23), зазначені частини з формули (2.36) отримуємо вектор прискорення:

$$\vec{a} = \left\{ -\frac{Gm}{r^2} \sum_{\ell=0}^{\infty} (\ell+1) \left(\frac{a_e}{r}\right)^{\ell} \sum_{k=0}^{\ell} P_{\ell,k} (\sin\phi) \left[C_{\ell,k} \cos k\lambda + S_{\ell,k} \sin k\lambda \right] \right\} \vec{u}_r$$

$$+ \left\{ \frac{Gm}{r^2} \sum_{\ell=1}^{\infty} \left(\frac{a_e}{r}\right)^{\ell} \sum_{k=0}^{\ell} \frac{\partial P_{\ell,k} (\sin\phi)}{\partial \phi} \left[C_{\ell,k} \cos k\lambda + S_{\ell,k} \sin k\lambda \right] \right\} \vec{u}_{\phi}$$

$$+ \left\{ \frac{Gm}{r^2} \sum_{\ell=1}^{\infty} \left(\frac{a_e}{r}\right)^{\ell} \sum_{k=1}^{\ell} k \frac{P_{\ell,k} (\sin\phi)}{\cos\phi} \left[-C_{\ell,k} \sin k\lambda + S_{\ell,k} \cos k\lambda \right] \right\} \vec{u}_{\lambda}.$$

$$(2.40)$$

Звертаємо увагу на те, що головний член радіальної складової (для якого ступень і порядок дорівнює нулю), - це гравітаційне прискорення в задачі двох тіл $-\frac{Gm}{r^2}$. Крім того, якщо використовуються тільки зональні умови (k = 0), то поздовжня складова прискорення дорівнює нулю.

Коефіцієнти $C_{\ell,k}$, $S_{\ell,k}$ залежать від форми тіла і розподілу мас усередині нього і є безрозмірними. Для великих планет, Сонця і Місяця, відома велика кількість цих коефіцієнтів.

При розгляді моделі гравітаційного поля астероїда, малого тіла Сонячної системи, прийнято спрощення, яке полягає в тому, що густина *ρ* по всьому об'єму астероїда є константою, та поверхня астероїда апроксимується тривісним еліпсоїдом.

На Рис. 2.2 і Рис. 2.3, як приклад, показана варіація нахил орбіти супутників "Beta" і "Gamma" астероїда 1999СС з врахуванням асиметрії центрального астероїда [74].

Рис. 2.2. Варіація нахилу орбіти супутника "Веta" астероїда 1999СС з врахуванням асиметрії центрального астероїда

Розглянемо коефіцієнти $C_{\ell,k}$, $S_{\ell,k}$ для астероїда [74]. Оскільки початок системи координат знаходиться в центрі тіла, перші коефіцієнти розкладання гравітаційного поля дорівнюють нулю. Якщо $\ell = 2$ и k = 0, k = 1, k = 2, то отримаємо наступні рівності [53]:

$$\begin{cases} C_{20} = \frac{2C - (A + B)}{2ma_e^2}, & S_{20} = 0, \\ C_{21} = \frac{E}{ma_e^2}, & S_{21} = \frac{D}{ma_e^2}, \\ C_{22} = \frac{B - A}{4ma_e^2}, & S_{22} = \frac{F}{2ma_e^2}, \end{cases}$$
(2.41)

де *A*, *B*, *C* – осьові моменти інерції, *D*, *E*, *F* – відцентрові моменти інерції, *m* – маса астероїда.

Рис. 2.3. Варіація нахилу орбіти супутника "Gamma" астероїда 1999СС з врахуванням асиметрії центрального астероїда

Виходячи з наближення форми астероїда трьохосним еліпсоїдом, маємо:

$$A = \int b^{2} + c^{2} dm = \rho \int b^{2} + c^{2} dV = \rho \iiint b^{2} + c^{2} dadbdc =$$

$$= \rho \iiint b^{2} + c^{2} da dbdc = \rho \iint b^{2}a + c^{2}a db dc =$$

$$= \rho \iint \left(\frac{b^{3}}{3}a + c^{2}ab\right)dc = \rho \left(\frac{1}{3}b^{3}ac + \frac{1}{3}z^{3}ab\right) + Const$$

$$B = \int a^{2} + c^{2} dm = \rho \int a^{2} + c^{2} dV = \rho \iiint a^{2} + c^{2} dadbdc =$$

$$= \rho \iiint \int a^{2} + c^{2} da dbdc = \rho \iint \left(\int \left(\frac{a^{3}}{3} + c^{2}a\right)db\right)dc =$$

$$= \rho \iint \left(\frac{a^{3}}{3}b + c^{2}ab\right)dc = \rho \left(\frac{1}{3}a^{3}bc + \frac{1}{3}z^{3}ab\right) + Const$$

$$C = \int a^{2} + b^{2} dm = \rho \int a^{2} + b^{2} dV = \rho \iiint a^{2} + b^{2} dadbdc =$$

$$= \rho \iiint a^{2} + b^{2} dm = \rho \int a^{2} + b^{2} dV = \rho \iiint a^{2} + b^{2} dadbdc =$$

$$= \rho \iint \int a^{2} + b^{2} da dbdc = \rho \iint \left(\int \left(\frac{a^{3}}{3} + b^{2}a\right)db\right)dc =$$

$$= \rho \iint \int a^{2} + b^{2} da dbdc = \rho \iint \left(\int \left(\frac{a^{3}}{3}b + b^{2}a\right)db\right)dc =$$

$$= \rho \iint \int a^{3}b + \frac{b^{3}}{3}a dc = \rho \left(\frac{1}{3}a^{3}bc + \frac{1}{3}b^{3}ac\right) + Const$$

$$D = \int bcdm = \rho \int bcdV = \rho \iiint bcdadbdc = \rho \iiint \int bcda \ dbdc =$$

$$= \rho \int \int abcdb \ dc = \rho \int \frac{1}{2} ab^2 cdc = \rho \frac{1}{4} ab^2 c^2 + Const,$$

$$E = \int acdm = \rho \int acdV = \rho \iiint acdadbdc = \rho \iint \int acda \ dbdc =$$

$$= \rho \int \left(\int \frac{1}{2} a^2 cdb\right) dc = \rho \int \frac{1}{2} a^2 bcdc = \rho \frac{1}{4} a^2 bc^2 + Const,$$

$$F = \int abdm = \rho \int abdV = \rho \iiint abdadbdc = \rho \iint \int abda \ dbdc =$$

$$= \rho \int \left(\int \frac{1}{2} a^2 bdb\right) dc = \rho \int \frac{1}{4} a^2 b^2 dc = \rho \frac{1}{4} a^2 b^2 c + Const,$$
(2.42)

де *а*, *b*, *c* – півосі апроксимуючого еліпсоїда.

2.3 Прискорення від приливної деформації астероїда

В результаті тяжіння супутника на кожен елемент центрального астероїда діє сила і викликає приливну деформацію. Внаслідок цієї деформації, тяжіння астероїда змінюється, виникають сили, які характеризуються додатковим прискоренням [19]:

$$\begin{cases} a_{Tx} = \frac{Gm_{St}a_e^5}{x_{ASt}^6}P_2 \cos\theta ,\\ a_{Ty} = \frac{Gm_{St}a_e^5}{y_{ASt}^6}P_2 \cos\theta ,\\ a_{Tz} = \frac{Gm_{St}a_e^5}{z_{ASt}^6}P_2 \cos\theta , \end{cases}$$
(2.43)

де m_{St} – маса супутника астероїда, $r_{ASt}(x_{ASt}, y_{ASt}, z_{ASt})$ – вектор положення супутника щодо астероїда. У нашому випадку кут $\theta = 0^{\circ}$ (кут між напрямом на

супутник і приливним горбом), в результаті $\cos \theta = 1 \Longrightarrow P_2 \cos \theta = 1$, тоді вираз (2.43) приймає вигляд:

$$\begin{cases} a_{Tx} = \frac{Gm_{St}a_{e}^{5}}{x_{ASt}^{6}}, \\ a_{Ty} = \frac{Gm_{St}a_{e}^{5}}{y_{ASt}^{6}}, \\ a_{Tz} = \frac{Gm_{St}a_{e}^{5}}{z_{ASt}^{6}}. \end{cases}$$
(2.44)

2.4 Прискорення, зумовлене Сонцем, великими планетами і супутниками планет

Прискорення, зумовлене Сонцем, вісьмома великими планетами і супутниками планет *а*_{*B*} розраховуємо за допомогою наступного виразу [53]:

$$\begin{cases} a_{Bx} = Gm_B \left(\frac{x_B - x_{St}}{r_o^3} - \frac{x_B}{r_B^3} \right), \\ a_{By} = Gm_B \left(\frac{y_B - y_{St}}{r_o^3} - \frac{y_B}{r_B^3} \right), \\ a_{Bz} = Gm_B \left(\frac{y_B - z_{St}}{r_o^3} - \frac{y_B}{r_B^3} \right), \end{cases}$$
(2.45)

де r_o – відстань від центру мас масивного тіла Сонячної системи (Сонця, планети, супутника планети) до супутника, r_B – відстані від масивного тіла Сонячної системи (Сонця, планети, супутника планети) до центрального астероїда даної системи, m_B – маса масивного тіла Сонячної системи (Сонця, планети, супутника планети), x_{St} , y_{St} , z_{St} – координати супутника астероїда, x_B , y_B , z_B – координати масивного тіла Сонячної системи (Сонця, планети) в астероїдоцентричній системі координат.

2.5 Тиск сонячного світла. Тіньова функція

В теорії руху супутників астероїдів необхідно враховувати і тиск сонячного світла на їх поверхню. Для цього використовується прискорення a_{Lp} , обумовлене тиском сонячного світла [50], [77].

Для обліку світлового тиску необхідний перехід від традиційної моделі гравітаційного поля в космічному просторі до моделі фотогравітаціонного поля, в якому поряд з гравітаційним притяганням існує і радіаційне відштовхування. зміна орбітальної енергії тіла призводить до еволюції його орбіти, темп і інтенсивність якої визначається рівнем впливу сил світлового тиску на це тіло. Як відомо, сила світлового тиску визначається формулою [50]:

$$\overline{F_{\odot}^{rad}} = k_A \frac{E \ r \ S}{c_L} \vec{e} = k_A \frac{L_{\odot}S}{4\pi r^2 c_L} \vec{e}, \qquad (2.46)$$

де $E r = \frac{L_{\odot}}{4\pi r^2}$ – освітленість на відстані *r* від Сонця, L_{\odot} – світимість Сонця, *S* – міделевий переріз супутника астероїда, C_L – швидкість світла, k_A – оптичний коефіцієнт астероїда (супутника астероїда), \vec{e} – одиничний вектор радіального геліоцентричного напрямку. Оскільки сила тяжіння:

$$\overline{F_{\odot}^{gr}} = -G\frac{mm_{\odot}}{r^2}\vec{e}, \qquad (2.47)$$

де *m*_o – маса Сонця, *m* – маса супутника астероїда, сума сил може бути представлена у наступному вигляді:

$$\overrightarrow{F_{\odot}} = \overrightarrow{F_{\odot}^{gr}} + \overrightarrow{F_{\odot}^{rad}} = -G\frac{mm_{\odot}}{r^2}\overrightarrow{e} + k_A\frac{L_{\odot}S}{4\pi r^2 c_L}\overrightarrow{e} = -G\frac{mm_{\odot}}{r^2} \ 1 - \beta \ \overrightarrow{e} = -G\frac{mm'_{\odot}}{r^2}\overrightarrow{e},$$
(2.48)

де $\beta = k_A \frac{S}{m} \frac{Q_{\odot}}{Gm_{\odot}}$ – фотогравітаційна редукція маси Сонця, $Q_{\odot} = \frac{L_{\odot}}{4\pi c_L}$ –

допоміжна константа, $m'_{\odot} = m_{\odot} \ 1 - \beta$ – скорочена маса Сонця. В загальному

випадку оптична модель поверхні астероїда витікає з припущення про переважання дифузного характеру перевипромінювання світла, при чому умова безперервності потоку світлової енергії є:

$$\alpha + \rho + \delta = 1, \tag{2.49}$$

де α – коефіцієнт поглинання, $\rho + \delta$ – коефіцієнт відбиття, що складається з коефіцієнтів дзеркального відображення ρ і дифузного відображення δ . Для дифузного перевипромінювання оптичний коефіцієнт має вигляд [50]:

$$k_A = \alpha + \rho + \frac{13}{9}\delta. \tag{2.50}$$

Для природного тіла приймаємо, що дзеркальне відображення відсутня ($\rho = 0$), а коефіцієнт дифузного віддзеркалення δ є геометричне альбедо астероїда. Отже, для неточкового сферичного дифузно відображаючого протяжного тіла [50]:

$$\begin{cases} \alpha = 1 - \delta, \\ k_A = \alpha + \frac{13}{9}\delta = 1 + \frac{4}{9}\delta. \end{cases}$$
(2.51)

В справжніх розрахунках альбедо поверхні астероїда приймають в межах від нуля до одиниці $\delta \in 0;1$. Таким чином, для будь якого альбедо можна знайти пропорційний оптичний коефіцієнт $k_A \in 1;1.44$. Якщо протяжний астероїд рахувати чорним тілом, то його оптичний коефіцієнт $k = \alpha = 1$, тобто в першому наближені можемо рахувати, що все випромінювання поглинається і не призводить до нагріву астероїда, а вся поглинута енергія переходить в орбітальний рух. Для точкового астероїда оптичний коефіцієнт k = 0, збурення немає.

Таким чином, прискорення від тиску сонячного світла, можемо записати в наступному вигляді:

$$\begin{cases} a_{Lpx} = \left(1 + \frac{4}{9}\delta\right)q\frac{S}{m}\Psi\left(\frac{r_s}{r_0}\right)\frac{x_{st} - x_s}{r_0}, \\ a_{Lpy} = \left(1 + \frac{4}{9}\delta\right)q\frac{S}{m}\Psi\left(\frac{r_s}{r_0}\right)\frac{y_{st} - y_s}{r_0}, \\ a_{Lpz} = \left(1 + \frac{4}{9}\delta\right)q\frac{S}{m}\Psi\left(\frac{r_s}{r_0}\right)\frac{z_{st} - z_s}{r_0}, \end{cases}$$
(2.52)

де $q = 4,5605 \cdot 10^{-6} \frac{H}{M^2}$ – сонячна стала Ψ – тіньова функція, r_S – відстань астероїда від Сонця. x_A, y_A, z_A – координати астероїда, x_S, y_S, z_S – координати Сонця.

Рис. 2.4. Варіація нахилу орбіти супутника астероїда 1999КW4 з врахуванням тиску сонячного світла

У систему рівнянь (2.52), входить тіньова функція. Розглянемо докладніше як вона обчислюється для нашої системи. В 1963 році Ферраз-Мелло [26] запропонував ввести поняття тіньової функції Ф. Ця функція дорівнює одиниці, коли супутник освітлений Сонцем, і дорівнює нулю, коли він знаходиться в тіні. У першому наближенні вважають, що тінь має циліндричну форму, але, коли потрібна краща точність, передбачається, що тінь конічна.

Якщо Ψ тіньова функція, тоді для циліндричної тіні отримаємо:

Рис. 2.5. Варіація довготи висхідного вузла орбіти супутника астероїда 1999KW4 з врахуванням тиску сонячного світла

Рис. 2.6. Геометрична модель циліндричної тіні

На Рис 2.4 та Рис 2.5 показана варіація нахилу і довготи висхідного вузла орбіти супутника астероїда 1999КW4 з врахуванням тиску сонячного світла [77].

У нашій чисельній моделі руху використовується модель тіні – конус, що дозволяє більш точно визначити моменти входу супутника в тінь і виходу з тіні. Тоді для конічної тіні отримаємо:

$$\Psi = \begin{cases} 0, \frac{x_{St}^2}{a_c^2} + \frac{y_{St}^2}{b_c^2} - \frac{z_{St}^2}{c_c^2} = 0, \\ 1, \frac{x_{St}^2}{a_c^2} + \frac{y_{St}^2}{b_c^2} - \frac{z_{St}^2}{c_c^2} = 1, \end{cases}$$
(2.54)

де a_c , b_c , c_c – осі конуса.

Рис. 2.7. Геометрична модель конічної тіні

При такому поданні форми тіні, можливе врахування зміни основи конуса (перпендикулярного перерізу астероїда до напрямку на Сонце). Величину *b_c*, для різних орієнтацій, можемо знайти з наступного виразу:

$$b_c = b + (a - b) \times (y_s / r_0).$$
(2.55)

Короткі висновки до Розділу 2

В Розділі 2 розглянуті структурні складові чисельної моделі, що використовується для ретельного вивчення еволюції орбіт супутників систем малих тіл. Наведені рівняння руху в координатній формі. Розглянуті методи врахування асиметрії компонентів системи, приливних горбів, тиску світла з урахуванням тіньової функції.

РОЗДІЛ З. ЕВОЛЮЦІЯ АСТЕРОЇДНИХ СИСТЕМ

3.1 Розрив подвійних і кратних астероїдних систем приливними силами планет

Було висловлено припущення, що в результаті YORP-ефекту, при збільшенні швидкості обертання астероїдів неправильної форми під дією фотонів через нерівномірне альбедо поверхні, швидкість обертання астероїда може зрости настільки, що приливні сили розірвуть його на дві частини [82].

Стійкість подвійного астероїда визначається не тільки гравітаційними збуреннями з боку Сонця і планет, але і приливною взаємодією самих компонентів подвійної системи.

Розглянемо задачу дослідження подвійних і кратних астероїдів, один з компонентів яких внаслідок великої маси будемо вважати головним, а інші – його супутниками. Для того, щоб астероїд втримав біля себе супутник, потрібно, щоб прискорення від головного астероїда перевищувало сумарні прискорення на супутник і астероїд від збурюючої планети.

Розглянемо випадок, коли планета, головний астероїд і його супутник знаходяться на одній прямій. В такому випадку різниця прискорень компонентів астероїдної системи, щодо великої планети, буде максимальною. Відповідно, відстань відриву меншого компонента астероїдної системи також буде максимальною.

Різниця прискорень в системі координат одного нерухомого центру, коли супутник знаходиться між планетою і астероїдом можна записати у вигляді [75]

$$\Delta a = \frac{GM_{\Pi}}{r - d^{2}} - \frac{GM_{\Pi}}{r^{2}} = \frac{GM_{\Pi}}{r^{2}} \left(\frac{1}{\left(1 - \frac{d}{r}\right)^{2}} - 1 \right),$$
(3.1)

1

де M_{Π} – маса планети, r – планетоцентрична відстань астероїдної системи, d – відстань між астероїдом і його супутником.

Спрощуючи вираз у великих дужках і нехтуючи членами $\left(\frac{d}{r}\right)^2$ порівняно з

 $\frac{2d}{r}$, і $\frac{d}{r}$ порівняно з 1, так як $d \ll r$, отримуємо:

$$\Delta a \approx \frac{2GM_{\Pi}}{r^3} d. \tag{3.2}$$

Відстань г знаходимо з умов:

$$\frac{GM_A}{d^2} = \frac{2GM_{\Pi}}{r^3}d,$$
(3.3)

де *М*_{*A*} – маса головного астероїда.

Остаточно отримуємо:

$$r = \left(\frac{2M_{\Pi}}{M_{A}}\right)^{\frac{1}{3}} d.$$
(3.4)

Як бачимо, в першому наближенні відстань відриву компонента системи залежить лише від взаємної відстані *d* між компонентами та їх маси.

У Додатку В наведені власні розрахунки критичних відстаней, на які повинні зблизитися кожна з 168 систем, для яких відомі відстані між компонентами та маси, з кожною з великих планет Сонячної системи, щоб стався відрив супутника від головного астероїда.

Проведені автором чисельні розрахунки на проміжку часу 20000 років показують, що не одна з розглянутих 168 систем при сучасних значеннях елементів їх орбіт, не зближуються з великими планетами.

3.2 Резонанси в астероїдних системах

Вже давно відомі резонанси в Сонячній системі. Вони спостерігаються в елементах орбіт Юпітера, Сатурна і Нептуна, викликаючи значні збурення в русі

цих планет. Відкрито резонанси супутників в системах Юпітера, Сатурна, Урана, Нептуна. Пояс астероїдів також має резонансну структуру, люки Кірквуда обумовлені резонансом астероїдів Головного поясу з Юпітером. У транснептунових об'єктів теж зустрічаються резонанси з Юпітером і Нептуном. Завдання автора показати наявність різного виду резонансів у відомих на даний момент астероїдних системах.

Якщо періоди обертання двох супутників астероїда відносяться як цілі невеликі натуральні числа, то такі супутники рухаються в орбітальному резонансі.

Розглянемо орбітальний резонанс, в одинадцяти відомих потрійних астероїдних системах. В Таблиці 3.1 наведені коефіцієнти резонансів супутників астероїдів, обчислені за формулою (3.5) в межах похибки спостережень. У астероїдній системі (136108) Наитеа супутники не знаходяться в орбітальному резонансі [76].

$$N_1 \times P_1 - N_2 \times P_2 \approx 0, \tag{3.5}$$

де N_1 и N_2 – коефіцієнти орбітального резонансу першого і другого супутника відповідно, P_1 и P_2 – орбітальні періоди обертання супутників.

Таблиця 3.1.

Астероїдна система	$N_1: N_2$
(45) Eugenia	3:8
(87) Sylvia	3:8
(93) Minerva	6:13
(130) Elektra	1:5
(216) Kleopatra	1:2
(2577) Litva	143:1
(3749) Balam	1:44
(47171)1999 TC36	53:2
(136617) 1994 CC	7:1
(153591) 2001 SN263	1:9

Орбітальний резонанс супутників потрійних астероїдів

Якщо період обертання навколо осі головного астероїда або супутника, відноситься до періоду обертання супутника навколо головного астероїда як цілі невеликі натуральні числа, то така система перебуває в *спін-орбітальному* резонансі. Окремий випадок спін-орбітального резонансу 1:1 називається приливним захопленням або синхронним обертанням (характерним прикладом такого резонансу є система Земля-Місяць). У Таблиці 3.2 наведені результати обчислень спін–орбітальних резонансів супутників подвійних і кратних астероїдів, отриманих за формулою (3.5), де P_1 – період обертання супутника або головного астероїда навколо своєї осі, P_2 – період обертання супутника навколо астероїда, N_1 і N_2 – коефіцієнти орбітального резонансу. Для астероїдних систем (88611) Теharonhiawako і 2003 QY90 некоректно говорити про спін-орбітальні резонанси через великі співвідношення періодів, більш ніж 1000:1.

Вид резонансу коли, період обертання головного компонента навколо своєї осі і період обертання супутника навколо своєї осі відносяться як цілі невеликі натуральні числа, називається *спін-спіновим* резонансом. Нижче (Таблиця 3.2) наведені приклади таких систем.

Таблиця 3.2.

Астероїдна система	$N_{SpinSatellite}: \ N_{PeriodSatellite}$	$N_{SpinAsteroid}: \ N_{PeriodSatellite}$	$N_{SpinAsteroid}: N_{SpinSatellite}$
(90) Antiope	1:1	1:1	1:1
(809) Lundia	1:1	1:1	1:1
(939) Isberga	1:1	9:1	9:1
(1139) Atami	1:1	1:1	1:1
(2006) Polonskaya	3:1	6:1	2:1
(2478) Tokai	1:1	1:1	1:1
(2577) Litva	6:1	13:1	2:1
(3309) Brorfelde	1:1	7:1	7:1
(4868) Knushevia	1:1	4:1	4:1
(4951) Iwamoto	1:1	1:1	1:1
(5381) Sekhmet	1:1	5:1	4:1
(5426) Sharp	1:1	5:1	5:1
(7369) Gavrilin	1:1	1:1	1:1
(8474) Rettig	1:1	1:1	1:1
(15430) 1998 UR31	1:1	9:1	9:1
(16525) Shumarinaiko	1:1	6:1	6:1
(16635) 1993 QO	16:1	4:1	1:4
(18890) 2000 EV26	1:1	4:1	4:1
(27568) 2000 PT6	1:1	5:1	5:1
(66391) 1999 KW4	1:1	6:1	6:1

Спін-орбітальні і спін-спінові резонанси в обраних астероїдних системах

(69230) Hermes	1:1	1:1	1:1
(88611) Teharonhiawako	-	-	1:1
(175706) 1996 FG3	1:1	6:1	6:1
(285263) 1998 QE2	24:1	7:1	1:4
(311066) 2004 DC	3:1	9:1	3:1
(399307) 1991 RJ2	1:1	5:1	5:1
(399774) 2005 NB7	1:1	4:1	4:1
2003 QY90	_	_	2:1

Якщо головний астероїд і супутник знаходяться в спін-спіновому резонансі 1:1, говорять, що система досягла стану повного приливного уповільнення обертання [53] складових її тіл. В кінці процесу приливного уповільнення головний астероїд і його супутник виявляються весь час оберненими один до одного однією стороною.

3.3 Динаміка кілець астероїда (10199) Chariklo

У 2014 році було повідомлено про відкриття [11] двох кілець навколо (10199) Chariklo і він став п'ятим об'єктом Сонячної системи у якого виявлена система кілець, після Юпітера, Сатурна, Урана і Нептуна. Головний компонент системи є найбільшим кентавром. Автором розглянуто час ерозії кілець в астероїдній системі (10199) Chariklo, що відбувається через низку ефектів. Також, визначена маса і період обертання передбачуваного супутника–пастуха даного астероїда [78].

Орбіта (10199) Chariklo знаходиться між орбітами Сатурна і Урана, його афелійна відстань більше ніж перигелійна відстань Урана. Астероїдна система обертається в резонансі 4:3 (62.53:83.53 років) з Ураном. В Таблиці 3.3 наведені Кеплерови елементи орбіти цієї астероїдної системи [96].

Виявлено, що астероїд оточений двома вузькими і щільними кільцями *C1R* і *C2R* шириною 6600 і 3800 метрів з оптичною густиною 0.38 і 0.06 відповідно. Радіуси кілець дорівнюють 390600 ± 3300 метрів і 404800 ± 3300 метрів відповідно. Відкриття кілець зроблено в рамках міжнародної спостережної програми під час покриття зорі UCAC4 248-108672 в 2013 році [11]. Після

відкриття було проведено ще ряд спостережень даного об'єкта, за результатами яких уточнювалися параметри системи [7]. Так само розглянута можливість розриву системи (розпад кілець), в результаті приливного впливу планет Сонячної системи [85], на проміжку часу до 1 млн. років.

Таблиця 3.3.

Велика піввісь	15.754190 AU
Ексцентриситет	0.1715941
Нахил	23.411663°
Аргумент перигелію	241.60058°
Висхідний вузол	300.379814°
Середня аномалія	60.13111°
Епоха	2014 май 23
Діаметр	248000 ± 18000 м [28]
Габаритні розміри	253800 × 289800 м [11]
Спіновий період	7.004 годин [83]

Орбітальні та фізичні параметри, головного астероїда

Вузькі, ексцентричні кільця повинні швидко ерозіювати. Той факт, що ці кільця спостерігаються, означає або те, що ми живемо в особливу епоху, коли подібні кільця існують, або те, що є певний механізм утримування, який зберігає властивості кілець незмінними на тривалих інтервалах часу.

Розглянемо час "життя" кілець. Тобто ерозія нічим не утримуваних вузьких кілець має відбуватися через низку ефектів: взаємних зіткнень частинок кільця, ефекту Пойнтінга-Робертсона, диференціальної прецесії. Детальний вивід формул для часу ерозії кілець, розглянуто Murray and Dermot [53] у своїй книзі. В роботі Braga-Ribas та інших [11] розраховано час ерозії кілець астероїда через зіткнення частинок і ефекту Пойнтінга-Робертсона. Ми розрахували час ерозії через третій ефект – диференціальну прецесію кілець.

Стиснення центрального астероїда змушує витягнуту орбіту прецесувати з швидкістю, приблизно рівною [53]:

$$\dot{\varpi} \approx \frac{3}{2} J_2 \left(\frac{R_A}{a_{St}}\right)^2 T, \qquad (3.6)$$

де J_2 – друга зональна гармоніка (0.014 ± 0.002), обчислена нами по раніше запропонованому алгоритму [74], R_A – радіус астероїда, a_{St} – велика піввісь орбіти (400300 ± 9700 м) ймовірного супутника-пастуха, T – середній період обертання (0.74 діб і 0.78 діб). Тому різниця значень $\dot{\sigma}$ для внутрішнього і зовнішнього країв ексцентричного кільця (радіальна ширина кільця по великій осі його орбіти, різна) по великій піввісі задається формулою [53]:

$$\delta \dot{\varpi} \approx -\frac{7}{2} \dot{\varpi} \frac{W}{a_{st}},\tag{3.7}$$

де W – радіальна ширина кільця. Отже, повинна існувати диференціальна прецесія, оскільки внутрішній край прецесує швидше, ніж зовнішній. Кільце ерозує за характерний час $\frac{2\pi}{|\delta \dot{\sigma}|}$, що в наших розрахунках становить 1660⁺¹⁵¹₋₁₄₆ діб для *C1R* і 2760⁺⁶⁸₋₆₇ діб для *C2R*.

Відкриття вузьких кілець Урана дало поштовх розвитку теорії утримання кілець, всупереч зіткненню частинок, ефекту Пойнтінга-Робертсона і диференціальній прецесії. Присутність супутників-пастухів виявилася найбільш правдоподібним поясненням стійкості вузьких кілець. Було запропоновано [53], що вузьке кільце утримується супутником.

Припустимо, що люк в кільцях астероїдної системи утворений супутником, аналогічно тому як супутник Пан утворює люк Енке в кільці А Сатурна. Використовуючи формулу (3.8), виведену з виразу для сфери дії, оцінимо масу супутника-пастуха:

$$m_{St} = \frac{R^{5/2} M_A}{a_{St}^{5/2}} \approx (3.27 \pm 0.19) \times 10^{15} \kappa_2, \qquad (3.8)$$

де R – радіус (7100 ± 100 м) сфери дії [63] супутника-пастуха. Масу (M_A) астероїда (10199) Chariklo обчислили за формулою:

$$M_{A} = \frac{4}{3}\pi ab^{2}\rho \approx 7.82 \times 10^{19} \kappa^{2}, \qquad (3.9)$$

де *а* – велика піввісь еліпсоїда астероїда (289800 м [11]), *b* – мала піввісь еліпсоїда астероїда (253800 м [11]), *р* – густина астероїда (10³ кг/м³ [97]).

З уточненого закону Кеплера знайдемо період обертання супутника-пастуха навколо головного компонента астероїдної системи:

$$P = \frac{2\pi a_{St}^{3/2}}{\sqrt{G(M_A + m_{St})}} \approx 6.12^{+0.23}_{-0.01}$$
 годин, (3.10)

Період обертання головного компонента системи навколо своєї осі дорівнює 7.004 годин. Порівнюючи ці два періоди видно, що система наближається до стану синхронного обертання [53].

Time (seconds after 3 June 2013, 00:00:00.0 UTC)

Рис. 3.1. Покриття астероїдом (10199) Chariklo зорі UCAC4 248-108672 в 2013 році [11]. На кривій блиску видно, як кільця перетинають промінь світла зорі

Відомі періоди обертання кілець *C1R* і *C2R* дорівнюють 0.74 доби і 0.78 доби [97] відповідно. Кільця наближаються до орбітально-орбітального резонансу 3:1 з передбачуваним супутником-пастухом.

3.4 Еволюція орбіт супутників обраних подвійних та кратних малих тіл Сонячної системи

Астероїдна система (45) Eugenia (Рис 3.2), складається з центрального астероїда Eugenia і двох супутників. Обидва супутники були відкриті за допомогою наземних телескопів з використанням адаптивної оптики [1].

Астроїд (45) Eugenia був відкритий 27 червня 1857 року Н. Goldschmidt в Paris, France. Альтернативне позначення: 1941 BN.

Рис. 3.2. Покадрова зйомка астероїда (45) Eugenia і його супутника, зроблена за допомогою телескопа CFHT [98]

Перший (зовнішній) супутник був відкритий 1 листопада 1998 року W.J. Merline, L.M. Close, C. Dumas, C.R. Chapman, F. Roddier, F. Menard, D.C. Slater, G. Duvert, C. Shelton i T. Morgan за допомогою телескопа CFHT Telescope, Mauna Kea, Hawaii, USA [52]. Зоряна величина супутника відрізняється від зоряної величини центрального астероїда більш ніж на шість одиниць, але цього було достатньо, щоб він був помічений в наземний телескоп, став таким чином, першим супутником астероїда, знайдений за допомогою наземних оптичних спостережень (Рис. 3.2). Супутник отримав тимчасове позначення S/1998 (45) 1. Далі супутник отримав назву "Petit-Prince" [32].

Другий (внутрішній) супутник був знайдений 14 лютого 2004 року F. Marchis, M. Baek, P. Descamps, J. Berthier, D. Hestroffer i F. Vachier після аналізу трьох зображень, отриманих в Very Large Telescope, ESO, Cerro Paranal, Chile [47]. Тимчасове позначення: S/2004 (45) 1. Пропонована назва "Princesse".

Астероїдна система (45) Eugenia, досить детально була розглянута Marchis et al. [48], де ними було прийнято, що центральний астероїд системи не симетричний і $J_2 = -C_{20} = 0.06$, у зв'язку с чим, площина руху супутників з часом не змінюється.

Астероїдна система (87) Sylvia (Рис 3.3), – потрійна система з Головного поясу.

Астероїд (87) Sylvia був відкритий 16 травня 1866 року N.R. Pogson в Madras, India. Альтернативне позначення: А909 GA.

Перший (зовнішній) супутник був відкритий 18 лютого 2001 року М.Е. Brown i J.L. Margot за допомогою адаптивної оптики телескопа спостереження з W.M. Keck II Telescope, Mauna Kea, Hawaii, USA [15]. Тимчасове позначення: S/2001 (87) 1. Постійне позначення "Romulus", отримав 11 серпня 2005 року [46].

В статті 2012 року [25], автори використали, ту ж модель, що й для астероїдної системи (136617) 1994 СС і так само доповнили модель стисненням центрального тіла ($J_2 = -C_{20} = 0.0985 - 1.0$). Також вони промоделювали рух супутників на проміжку часу 50 років.

Ветthier зі співавторами в своїй роботі [8], висловив припущення, що форма центрального астероїда системи істотно змінюється через приливні збурення з боку супутників і доповнив модель стисненням центрального тіла рівним $J_2 = -C_{20} = 0.024^{+0.016}_{-0.009}$.

Рис. 3.3. Зображення астероїда (87) Sylvia з двома супутниками, отримане за допомогою адаптивної оптики VLT [99]

Астероїдна система (90) Antiope (Рис 3.4), подвійний астероїд Головного поясу. Астероїд (90) Antiope відкрито 1 жовтня 1899 року R. Luther в Düsseldorf, Germany. Альтернативне позначення: 1952 ВК2.

Супутник відкрито 10 серпня 2000 року W.J. Merline, L.M. Close, J.C. Shelton, C. Dumas, F. Menard, C.R. Chapman i D.C. Slater на W.M. Keck II Telescope, Mauna Kea, Hawaii, USA [32]. Тимчасове позначення: S / 2000 (90) 1.

Астероїди з супутниками відкривали й раніше, але це був перший відомий випадок, коли обидва компоненти схожі за розмірами.

Рис. 3.4. Зображення подвійного астероїда (90) Antiope, отримане на W.M. Keck II [101]

Астероїдна система (66391) 1999 KW4 (Рис 3.5), подвійний астероїд, належить групі Атенів з АЗЗ. Орбіта перетинає орбіту Меркурія і Венери.

Астероїд (66391) 1999 КW4 відкрито 20 травня 1999 року LINEAR, Socorro, New Mexico, USA.

Супутник відкритий 21 травня 2001 року з використанням радіолокаційних спостережень і фотометричних кривих блиску.

Завдяки радіолокаційним спостереженням, дуже добре вивчена подвійна система. Система використовувалась, як один з об'єктів для пошуку Binary YORP ефекту (збільшення великої піввісі орбіти супутника астероїда). При чисельному моделюванні різними авторами, компоненти приймалися за еліпсоїди [29], [71].

Рис. 3.5. Зображення подвійного астероїда (66391) 1999 KW4, отримане за допомогою радарних спостережень на GDSCC [100]

Шестикомпонентна система (134340) Pluto.

Pluto (Рис. 3.6) відкрито 23 січня 1930 року С.W. Tombaugh в Lowell Observatory, Flagstaff, Arizona, USA. Відкриття об'єкту мотивоване пошуком "Planet X" по гравітаційним збуренням орбітального руху Нептуна. З відкриттям транснептунових об'єктів, починаючи з 1992 року, Pluto вважався одним з найбільших членів класу ТНО. Його було класифіковано як планету з моменту його відкриття і до 2006 року. В 2006 році Міжнародний Астрономічний союз [90] класифікував Pluto як карликову планету і він отримав номер 134340 по каталогу MPC [91].

Рис. 3.6. Зображення Pluto отримане 13 липня 2015 року космічним апаратом New Horizons на відстані 768000 км [102]

Сharon (Рис. 3.7) відкрито 22 червня 1978 року J.W. Christy за спостереженнями IMG з 29 квітня 1965 по 12 травня 1978 року U.S. Naval Observatory, USA [67]. Тимчасове позначення S/1978 P1. Постійну назву "Charon" отримав 3 січня 1986 року [49]. Серед супутників планет та карликових планет Сharon є найбільшим по співвідношенню супутник – планета.

Nix i Hydra (Рис. 3.8-9) відкрили 15 травня 2005 року Н.А. Weaver, S.A. Stern, M.J. Mutchler, A.J. Steffl, M.W. Buie, W.J. Merline, J.R. Spencer, E.F. Young i L.A. Young за допомогою спостережень на космічному телескопі Hubble Space
Telescope [G05c]. Тимчасове позначення: S/2005 P2 і S/2005 P1 відповідно. Постійні позначення супутники отримали 21 червня 2006 року [34].

Рис. 3.7. Зображення Charon отримане 13 липня 2015 року космічним апаратом New Horizons на відстані 466000 км. На зображені півсфера обернена до Pluto з північним полюсом (затемнений) в верхній частині [102]

Kerberos (Рис. 3.10) відкрили 28 червня 2011 року М.R. Showalter, D.P. Hamilton, S.A. Stern, H.A. Weaver, A.J. Steffl і L.A. Young за допомогою спостережень на космічному телескопі Hubble Space Telescope [64]. Також були

спостереження до відкриття з 2006 року [14]. Тимчасове позначення: S/2011 (134340) 1. Постійне позначення "Kerberos" отримав 2 липня 2013 року [36].

Рис. 3.8. Зображення Nix отримане 14 липня 2015 року космічним апаратом New Horizons на відстані 165000 км [102]

Styx (Рис. 3.11) відкрили 26 червня 2012 року М.R. Showalter, Н.А. Weaver, S.A. Stern, A.J. Steffl, M.W. Buie, W.J. Merline, M.J. Mutchler, R. Soummer i H. B. Throop за допомогою спостережень на космічному телескопі Hubble Space Telescope [65]. Тимчасова позначення: S/2012 (134340) 1. Постійну назву "Styx" отримав 2 червня 2013 року [36].

Взаємні затемнення и покриття Pluto і Charon відбувалися з 1985 по 1990 роки, що дозволило уточнити різні фізичні дані системи. В 1988 році було

підтверджено, що Pluto має тонку атмосферу, яка складається з азоту, метану, окису вуглецю.

Рис. 3.9. Зображення Nix отримане 14 липня 2015 року космічним апаратом New Horizons на відстані 231000 км [102]

Зонд New Horizons наблизився на мінімальну відстань до Pluto 14 липня 2015 року 11:50 UTC, пройшовши на відстані 12500 км від Pluto і 29000 км від Charon (Рис. 3.6-3.11).

На теперішній час, на підставі цих і попередніх космічних і наземних спостережень, різними авторами, були уточнені Кеплерові елементи орбіти

супутників Pluto [17], [66] та фізичні параметри компонентів системи [69], [30], [70], [14].

Рис. 3.10. Зображення Styx отримане 14 липня 2015 року космічним апаратом New Horizons на відстані 631000 км [102]

На підставі нових даних, Yu Jiang et al. [86] чисельно промоделювали еволюцію орбіт супутників Pluto на проміжку часу 800 діб, інтегруючи рівняння руху методом Рунге-Кута 8 порядку.

Астероїдна система (136617) 1994 СС (Рис. 3.12), належить групі Apollo з A33.

Астероїд 1994 СС відкрито 3 лютого 1994 року Spacewatch в Kitt Peak Observatory, Arizona, USA.

Супутники "Beta" i "Gamma" були відкриті 12 червня 2009 року М. Brozovic, L.A. M. Benner, M.C. Nolan, E.S. Howell, C. Magri, J.D. Giorgini, P.A. Taylor, J.L. Margot, M.W. Busch, M.K. Shepard, L.M. Carter, J.S. Jao, J. Van Brimmer, C.R. Franck, M.A. Silva, M.A. Kodis, D.T. Kelley, M.A. Slade, A. Bramson, K.J. Lawrence, J.T. Pollock, P. Pravec, D.E. Reichart, K.M. Ivarsen, J. Haislip, M.C. Nysewander i A.P. LaCluyze з використанням радіолокаційних спостережень з Goldstone, California, USA; Arecibo Observatory, Puerto Rico [12].

Рис. 3.11. Зображення Styx отримане 14 липня 2015 року космічним апаратом New Horizons на відстані 396100 км. Помітна подвійна форма супутника [102]

Великий ексцентриситет, більш ніж 0.4, призводить до того, що орбіта (136617) 1994 СС перетинає орбіти Землі і Марса. В 2011 році вийшла стаття [23], в якій автори розглядали модель руху супутників з урахуванням стиснення центрального астероїда ($J_2 = -C_{20} = 0.014 \pm 0.383$), на проміжку часу 300 діб.

В роботі 2016 року [86], на основі нових даних, автори чисельно промоделювали еволюцію орбіт супутників астероїдних систем (136617) 1994 СС и (87) Sylvia на проміжку часу 800 діб. Інтегрування рівнянь руху велося методом Рунге-Кута 8 порядку. В моделі враховувався гравітаційний потенціал несферичного центрального тіла, електростатичний потенціал і магнітний потенціал.

Система (**136108**) **Наитеа** (Рис. 3.13) класифікована як плутоїд (підмножина карликових планет), ТНО і карликова планета.

Наитеа відкрито 7 березня 2003 року в Sierra Nevada Observatory, Granada, Spain. Альтернативна назва: 2003 EL61. Свою назву об'єкт отримав 17 вересня 2008 року [MPC63878].

Рис. 3.12. Радіолокаційні спостереження астероїдної системі (136617) 1994 СС з Goldstone [100]

Перший супутник в системі Haumea - Ні'іака відкрито 26 січня 2005 року М. Е. Brown та іншими на телескопі W.M. Keck II, Mauna Kea, Hawaii, USA [33]. Тимчасове позначення: S/2005 (2003 EL61) 1. Постійне ім'я присвоєно 17 вересня 2008 року [35].

Другий супутник – Namaka відкрито 30 червня 2005 року М. Е. Brown та іншими на телескопі W.M. Keck II, Mauna Kea, Hawaii, USA [16]. Тимчасове позначення: S/2005 (2003 EL61) 1. Постійне ім'я присвоєно 17 вересня 2008 року [35].

Обидва супутники примітні тим, що рухаються по ретроградним орбітам, навколо центрального тіла. Ragozzine i Brown [61] досить докладно розглянули систему (136108) Наитеа використовуючи спостереження Hubble Space Telescope i W. M. Keck Telescope. Розрахували стиснення центрального тіла ($J_2 = -C_{20} = 0.244$) та проінтегрували рівняння руху системи на інтервалі 1300 діб.

Рис. 3.13. Наитеа з двома супутниками Hi'iaka (зверху) і Namaka (знизу). Зображення отримане на W.M. Keck II [101]

Астероїдна система (153591) 2001 SN263, потрійна система з групи Атог АЗЗ.

Астероїд 2001 SN263 відкрито 20 вересня 2001 року LINEAR в Socorro, New Mexico, USA.

Супутники "Beta" i "Gamma" відкрито М.С. Nolan, E.S. Howell, L.A.M. Benner, S.J. Ostro, J.D. Giorgini, M.W. Busch, L.M. Carter, R.F. Anderson, C. Magri, D.B. Campbell, J.L. Margot i R. Vervack з використанням радіолокаційних спостережень Arecibo Observatory, Puerto Rico [56].

Система (385446) Manwe, подвійна система з групи ТНО.

Об'єкт відкрито 25 серпня 2003 року М. W. Buie в Cerro Tololo Observatory, La Serena, Chile. Альтернативна назва: 2003 QW111.

Супутник відкрито 25 липня 2006 року К.S. Noll, W.M. Grundy, D.C. Stephens і Н.F. Levison за допомогою Hubble Space Telescope [56]. Ім'я "Thorondor", супутник отримав 15 квітня 2014 року [MPC88005].

Динаміка супутників всіх дев'яти вищеперерахованих систем розглянута автором на проміжку 100 років і 1000 років з урахуванням несферичності компонентів (розкладення гравітаційного потенціалу компонентів, приливних горбів), тиску світла (тіньова функція), великих планет Сонячної системи, для виявлення періодичних і вікових збурень в Кеплерових елементах орбіт.

В Таблиці 3.3 показані Кеплерові елементи орбіти обраних систем малих тіл для врахування їхнього руху по геліоцентричній орбіті [96]. В наступній Таблиці 3.4, зібрані данні по фізичним параметрам систем. Вони потрібні для розрахунків коефіцієнтів розкладання гравітаційного потенціалу компонентів розглянутих об'єктів (Таблиця 3.5).

Таблиця 3.3.

Назва	<i>a</i> , a.o.	e	i, °	ω, °	Ω, °	<i>M</i> ₀ , °	Epoch
(45) Eugenia	2.720342369	0.083185113	6.6033570	88.689234	147.681770	2.460259	2014 May 23
(87) Sylvia	3.481808398	0.091145156	10.8768036	263.685494	73.083782	179.424861	2014 May 23
(90) Antiope	3.154487052	0.163458400	2.2071403	244.40561	70.04471	188.255621	2014 May 23
(66391) 1999 KW4	0.642291859	0.688460238	38.8871737	192.6154467	244.9231238	221.227725	2014 May 23
(134340) Pluto	39.44506973	0.250248713	17.08900092	112.5971417	110.376958	25.24718971	2006 Sep 22
(136617) 1994 CC	1.637780212	0.417226647	4.6842339	24.7567739	268.603487	116.8774809	2014 May 23

Кеплерові елементи орбіти обраних подвійних і кратних малих тіл Сонячної системи

(136108) Haumea	43.1660	0.192457	28.191350	240.4148	121.78801	208.1445	2014 May 23
(153591) 2001 SN263	1.986951527	0.478406719	6.6857566	172.8285743	325.8353797	86.287743	2014 May 23
(385446) Manwe	43.635	0.11541	2.666383	21.058	68.520	273.396	2014 May 23

На даний час стандартом чисельного інтегрування в небесній механіці є *метод Еверхарта* [22]. Метод Еверхарта 15-го порядку [5] був застосований автором для чисельного інтегрування рівнянь руху.

Метод Еверхарта є одним з найефективніших по точності і швидкодії чисельним методом для вирішення завдань небесної механіки. Розглянемо основну ідею побудови алгоритмів Еверхарта на прикладі рішення диференціальних рівнянь виду:

$$\frac{d^2x}{dt^2} = F(x,t).$$
 (3.11)

Уявімо праву частину (3.11) у вигляді ряду за ступенями t в околиці $t_1=0$:

$$\ddot{x} = F(x,t) = F_1 + A_1 t + A_2 t^2 + \dots + A_n t^n.$$
(3.12)

Інтегруючи рівняння (3.12) двічі, отримаємо:

$$\dot{x} = \dot{x}_1 + F_1 t + \frac{A_1 t^2}{2} + \frac{A_2 t^3}{3} + \dots + \frac{A_n t^{n+1}}{n+1}, \qquad (3.13)$$

$$x = x_1 + \dot{x}_1 t + \frac{F_1 t^2}{2} + \frac{A_1 t^3}{6} + \dots + \frac{A_n t^{n+2}}{(n+1)(n+2)}.$$
(3.14)

Важливо відзначити, що поліном, що стоїть в правій частині (3.12) не є відрізком ряду Тейлора. Коефіцієнти A_i обчислюються з умов найкращого наближення x і \dot{x} в момент часу T, відповідно значенню рішення на кінці кроку h по формулам (3.13) і (3.14). Для зв'язку A – значень з F – значеннями використовується вираз:

$$F = F_1 + \alpha_1 t + \alpha_2 t (t - t_2) + \alpha_3 t (t - t_2) (t - t_3) + \dots$$
(3.15)

В кожний момент часу *t*_i маємо:

$$\begin{cases} F_2 = F_1 + \alpha_1 t_2, \\ F_3 = F_1 + \alpha_1 t_3 + \alpha_2 t_3 (t_3 - t_2), \\ \dots \end{cases}$$

Позначаючи $t_{nj} = t_n - t_j$, отримаємо:

$$\begin{cases} \alpha_{1} = (F_{2} - F_{1})/t_{2}, \\ \alpha_{2} = ((F_{3} - F_{1})/t_{3} - \alpha_{1})/t_{32}, \\ \alpha_{3} = (((F_{4} - F_{1})/t_{4} - \alpha_{1})/t_{42} - \alpha_{2})/t_{32}, \\ \alpha_{4} = ((((F_{5} - F_{1})/t_{5} - \alpha_{1})/t_{52} - \alpha_{2})/t_{53} - \alpha_{3})/t_{54}, \\ \dots \end{cases}$$
(3.16)

Зв'язок А – значень з α – значеннями знаходится з наступних співвідношень:

$$\begin{cases}
A_{1} = \alpha_{1} + (-t_{2}t_{3})\alpha_{2} + (t_{2}t_{3})\alpha_{3} = c_{11}\alpha_{1} + c_{21}\alpha_{1}\alpha_{2} + c_{31}\alpha_{3} + ..., \\
A_{2} = \alpha_{2} + (-t_{2} - t_{3})\alpha_{3} + ... = c_{22}\alpha_{2} + c_{32}\alpha_{3} + ..., \\
A_{3} = \alpha_{3} + ... = c_{33}\alpha_{3} + ..., \\
....$$
(3.17)

Коефіцієнти с_{іј} визначаються з рекурентних співвідношень:

$$\begin{cases} c_{ij} = 1 , i = j, \\ c_{ij} = -t_i c_{i-1,1} & i > 1, \\ c_{ij} = c_{i-1,j-1} - t_i c_{i-1,j}, & 1 < j < i. \end{cases}$$

$$(3.18)$$

Надалі знаходження рішення рівняння (3.11) зводиться до знаходження вузлів розбиття t_i кроку h. Покажемо знаходження вузлів розбиття кроку h = [0,T]на прикладі алгоритму інтегрування п'ятого порядку (n = 5). У початковий момент часу $t_1=0$ нам відомі x_1 , \dot{x}_1 , F_1 . Значення x в момент часу t_2 , t_3 і t_4 обчислюються за формулами:

$$\begin{cases} x_{2} = x_{1} + \dot{x}_{1}t_{2} + F_{1}t_{2}^{2}/2 + [A_{1}t_{2}^{3}/2 \times 3 + A_{2}t_{2}^{4}/3 \times 4 + A_{3}t_{2}^{5}/4 \times 5], \\ x_{3} = x_{1} + \dot{x}_{1}t_{3} + F_{1}t_{3}^{2}/2 + A_{1}t_{3}^{3}/2 \times 3 + [A_{2}t_{3}^{4}/3 \times 4 + A_{3}t_{3}^{5}/4 \times 5], \\ x_{4} = x_{1} + \dot{x}_{1}t_{4} + F_{1}t_{4}^{2}/2 + A_{1}t_{4}^{3}/2 \times 3 + A_{2}t_{4}^{4}/3 \times 4 + [A_{3}t_{4}^{5}/4 \times 5]. \end{cases}$$
(3.19)

Вираз (3.19) є пророкуючими рівняннями для визначення коефіцієнтів A_i. За допомогою наступних двох виправляючих рівнянь знаходяться значення розв'язку на кінці кроку *h*:

$$\begin{cases} x(T) = x_1 + \dot{x}_1 T + F_1 T^2 / 2 + A_1 T^3 / 2 \times 3 + A_2 T^4 / 3 \times 4 + A_3 T^5 / 4 \times 5, \\ \dot{x}(T) = \dot{x}_1 + F_1 T + A_1 T^2 / 2 + A_2 T^3 / 3 + A_3 T^4 / 4. \end{cases}$$
(3.20)

Значення t_2 , t_3 , t_4 визначаються з умов, які дозволили б за допомогою формул (3.20) отримати рішення з точністю до сьомого порядку, тобто різниці рішень п'ятого і сьомого порядків повинні обернутися в нуль:

$$\begin{cases} \Delta x = 0, \\ \Delta \dot{x} = 0. \end{cases}$$
(3.21)

Вводячи безрозмірні величини $h_i = \frac{t_i}{T}$, можна отримати систему алгебраїчних рівнянь для відповідних їм коефіцієнтів, виду:

$$\begin{cases} \frac{c'_{41}}{2} + \frac{c'_{42}}{3} + \frac{c'_{43}}{4} + \frac{1}{5} = 0, \\ \frac{c'_{41}}{3} + \frac{c'_{42}}{4} + \frac{c'_{43}}{5} + \frac{1}{6} = 0, \\ \frac{c'_{41}}{4} + \frac{c'_{42}}{5} + \frac{c'_{43}}{6} + \frac{1}{7} = 0. \end{cases}$$
(3.22)

Розв'язок цієї системи:

$$\begin{cases} c'_{41} = -\frac{4}{35} = -h_2 h_3 h_4, \\ c'_{42} = \frac{6}{7} = h_2 h_3 + h_3 h_4 + h_2 h_4, \\ c'_{43} = -\frac{12}{7} = -h_2 - h_3 - h_4. \end{cases}$$
(3.23)

показує, що значення h_2 , h_3 , h_4 виявляються коренями наступного полінома третього ступеню:

$$h^{3} + (-\frac{12}{7})h^{2} + (\frac{6}{7})h - \frac{4}{35} = 0.$$
 (3.24)

З (3.24) випливає, що отримані вузли розбиття кроку h збігаються з квадратурною формулою Гаусса-Радо, а величини h_2 , h_3 , h_4 дорівнюють кореням полінома Лежандра $P_3(2h-1) = 0$.

Метод Еверхарта є неявним однокроковим методом.

Для врахування збурень з боку великих планет автор запозичив необхідні координати з *чисельної теорії DE431(DE430)* [27].

Ефемериди великих планет і Місяця DE430 і DE431 генеруються шляхом порівняння чисельно інтегрованих орбіт Місяця i великих планет 3i спостереженнями. Сучасна місячна орбіта відома з субметровою точністю за допомогою лазерної локації Місяця. Орбіти внутрішніх планет, відомо з субкілометровою точністю за рахунок порівняння спостереження радіокосмічних апаратів на орбіті навколо них. Дуже довгі виміри интерферометрами космічних апаратів на Марсі дозволяють прив'язати ефемериди до Celestial Reference Frame з точністю 0".0002. Це є обмежуючим джерелом помилок для орбіт планет земної групи, і відповідає орбіті невизначеності в кілька сотень метрів. Орбіти Юпітера і Сатурна визначаються з точністю в кілька десятків кілометрів в результаті даних відстеження космічних апаратів. Орбіти Урана, Нептуна і Плутона в першу чергу визначаються з астрометричних спостережень, для яких вимірювання мають більшу похибку через атмосферу Землі, в поєднанні з каталогом зірок, обмежують точність до декількох тисяч кілометрів. DE430 і DE431 розрізняються за своїм інтегрованим проміжком часу. В динамічну модель DE430 включено демпфуючий член між рідкою серцевиною Місяця і твердою мантією, яка дає найкращу відповідність даним місячної лазерної локації, проте не підходить для вертикальної інтеграції більш ніж кілька століть. Ефемериди DE431 схожі на DE430, але отримані без демпфуючого члена, тому місячна орбіта є менш точною, ніж в DE430 протягом часу поблизу поточної епохи, але більше підходить, ніж за кілька століть в минулому. DE431 є придатною на більш тривалому проміжку часу (від -13200 до +17191 років), ніж DE430, яка охоплює проміжок від 1550 до 2650 року.

На відмінність від восьми систем малих тіл, для яких наводяться Кеплерові елементи орбіти (Таблиця 3.6), в системі Pluto, наведені відомі положення і швидкості шести компонентів відносно барицентру системи (Таблиця 3.7).

Тому необхідно зробити перехід від координат та компонент швидкості в барицентричній системи координат до Кеплерових елементів орбіт. Такий перехід має певні особливості в порівняні зі звичним переходом від вектора положення і швидкості в планетоцентричній системі координат до Кеплерових елементів орбіти [19].

В замкненій барицентричній системі координат маємо:

$$\vec{m_{1} r_{1}} + \vec{m_{2} r_{2}} = 0, \quad \vec{r_{1}} - \vec{r_{2}} = \vec{r}, \qquad (3.25)$$

$$\begin{cases} \vec{r_{1}} = -\frac{m_{2}}{m_{1} + m_{2}} \vec{r}, \\ \vec{r_{2}} = -\frac{m_{1}}{m_{1} + m_{2}} \vec{r}, \end{cases}$$

$$(3.26)$$

де m_1 – маса першого тіла, m_2 – маса другого тіла, r_1 – відстань першого тіла до баріцентру, r_2 – відстань другого тіла до баріцентру.

$$\theta_1 = \theta_2 - \pi = \theta, \qquad \dot{\theta}_1 = \dot{\theta}_2 = \dot{\theta},$$
(3.27)

$$\begin{cases} x_1 = r_1 \cos \theta_1, & \{x_2 = r_2 \cos \theta_2, \\ y_1 = r_1 \sin \theta_1, & \{y_2 = r_2 \sin \theta_2, \\ y_2 = r_2 \sin \theta_2, \end{cases}$$
(3.28)

$$\begin{cases} \mathbf{x}_{1} = \mathbf{r}_{1}\cos\theta_{1} - \mathbf{r}_{1}\sin\theta_{1}\dot{\theta}_{1}, & \\ \mathbf{x}_{2} = \mathbf{r}_{2}\cos\theta_{2} - \mathbf{r}_{2}\sin\theta_{2}\dot{\theta}_{2}, \\ \mathbf{y}_{1} = \mathbf{r}_{1}\sin\theta_{1} + \mathbf{r}_{1}\cos\theta_{1}\dot{\theta}_{1}, & \\ \mathbf{y}_{2} = \mathbf{r}_{2}\sin\theta_{2} + \mathbf{r}_{2}\cos\theta_{2}\dot{\theta}_{2}. \end{cases}$$
(3.29)

В результаті:

$$|\dot{\vec{r}}_{1}|^{2} = \dot{x}_{1}^{2} + \dot{y}_{1}^{2} = \dot{r}_{1}^{2} + r_{1}^{2} \dot{\theta}_{1}^{2}.$$
(3.30)

Рис. 3.14. Рух тіл в барицентричній системі координат.

Інтеграл енергії:

$$\frac{\stackrel{\bullet}{m_1} |\stackrel{\bullet}{r_1}|^2}{2} + \frac{\frac{m_2}{r_2} |\stackrel{\bullet}{r_2}|^2}{2} - \frac{Gm_1m_2}{r} = c_{10}, \qquad (3.31)$$

$$\frac{m_{1}|\vec{r}_{1}|^{2}}{2} + \frac{m_{2}|\vec{r}_{2}|^{2}}{2} - \frac{Gm_{1}m_{2}}{r} = \frac{1}{2} \left(m_{1} \left(\overset{\bullet^{2}}{r_{1}} + r_{1}^{2} \overset{\bullet^{2}}{\theta_{1}} \right) + m_{2} \left(\overset{\bullet^{2}}{r_{2}} + r_{2}^{2} \overset{\bullet^{2}}{\theta_{2}} \right) \right) - \frac{Gm_{1}m_{2}}{r} = \frac{m_{1}m_{2}}{2(m_{1}+m_{2})^{2}} m_{1} + m_{2} \left(\overset{\bullet^{2}}{r} + r^{2} \overset{\bullet^{2}}{\theta_{1}} \right) - \frac{Gm_{1}m_{2}}{r} = \frac{1}{2} \frac{m_{1}m_{2}}{m_{1}+m_{2}} \left(\overset{\bullet^{2}}{r} + r^{2} \overset{\bullet^{2}}{\theta_{1}} \right) - \frac{Gm_{1}m_{2}}{r}.$$
(3.32)

Отже:

$$\frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \left(\stackrel{\bullet^2}{r} + r^2 \stackrel{\bullet^2}{\theta} \right) - \frac{G m_1 m_2}{r} = c_{10}$$
(3.33)

Момент імпульсу по визначенню: $h_1 = m_1 r_1^2 \dot{\theta}_1, \ h_2 = m_2 r_2^2 \dot{\theta}_2,$

$$h = h_{1} + h_{2} = m_{1}r_{1}^{2} \overset{\bullet}{\theta} + m_{2}r_{2}^{2} \overset{\bullet}{\theta} = m_{1} \frac{m_{2}^{2}}{(m_{1} + m_{2})^{2}} r^{2} \overset{\bullet}{\theta} + m_{2} \frac{m_{1}^{2}}{(m_{1} + m_{2})^{2}} r^{2} \overset{\bullet}{\theta} =$$
$$= \frac{m_{1}m_{2}}{(m_{1} + m_{2})^{2}} m_{2} + m_{1} r^{2} \overset{\bullet}{\theta} = \frac{m_{1}m_{2}}{m_{1} + m_{2}} r^{2} \overset{\bullet}{\theta}.$$
(3.34)

Сумарний момент імпульсу:

$$h = \frac{m_1 m_2}{m_1 + m_2} r^2 \overset{\bullet}{\theta}$$
(3.35)

Порівнюючи з інтегралом енергії:

$$\frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \cdot r^2 + \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} r^2 \cdot r^2 - \frac{G m_1 m_2}{r} = \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \cdot r^2 + \frac{1}{2} h \cdot r - \frac{G m_1 m_2}{r} =$$
$$= \frac{1}{2} \frac{m_1 m_2}{m_1 + m_2} \cdot r^2 + \frac{1}{2} \frac{h^2}{r^2} \frac{m_1 + m_2}{m_1 m_2} - \frac{G m_1 m_2}{r} = c_{10}$$
(3.36)

Диференціальні рівняння руху m₂ відносно m₁:

$$\stackrel{\bullet}{\overrightarrow{r}} = -\frac{G(m_1 + m_2)}{r^3} \stackrel{\bullet}{\overrightarrow{r}}$$
(3.37)

3 законів Ньютона випливає:

$$\begin{cases} \stackrel{\bullet}{\overrightarrow{r}_{1}} = -\frac{Gm_{2}}{r^{3}} \stackrel{\to}{\overrightarrow{r}} = -\frac{Gm_{2}m_{2}^{3}}{(m_{1}+m_{2})^{3}r_{1}^{3}} \frac{m_{1}+m_{2}}{m_{2}} \stackrel{\to}{\overrightarrow{r}_{1}} = -\frac{Gm_{2}^{3}}{(m_{1}+m_{2})^{2}} \frac{\overrightarrow{r}_{1}}{r_{1}^{3}}, \\ \stackrel{\bullet}{\overrightarrow{r}_{2}} = \frac{Gm_{1}}{r^{3}} \stackrel{\to}{\overrightarrow{r}} = -\frac{Gm_{1}m_{1}^{3}}{(m_{1}+m_{2})^{3}r_{2}^{3}} \frac{m_{1}+m_{2}}{m_{1}} \stackrel{\to}{\overrightarrow{r}_{2}} = -\frac{Gm_{1}^{3}}{(m_{1}+m_{2})^{2}} \frac{\overrightarrow{r}_{2}}{r_{2}^{3}}. \end{cases}$$
(3.38)

Кеплерові елементи орбіти точки 2 відносно барицентру системи тіл m₁ та m₂ обчислюються так:

$$\mu = G \frac{m_1^3}{(m_1 + m_2)^2} \tag{3.38}$$

Питомий момент імпульсу:

$$h_{\rm s} = \sqrt{p\,\mu} \tag{3.39}$$

$$\begin{cases} h_{SX} = y_2 \dot{z}_2 - z_2 \dot{y}_2, \\ h_{SY} = x_2 \dot{z}_2 - z_2 \dot{x}_2, \\ h_{SZ} = x_2 \dot{y}_2 - y_2 \dot{x}_2. \end{cases}$$
(3.40)

Фокальний параметр:

$$p = \frac{h_{SX}^2 + h_{SY}^2 + h_{SZ}^2}{\mu},$$
(3.41)

$$r_{2} = \sqrt{x_{2}^{2} + y_{2}^{2} + z_{2}^{2}}, \qquad \begin{vmatrix} \bullet \\ \overrightarrow{r}_{2} \end{vmatrix} = \sqrt{x_{2}^{2} + y_{2}^{2} + z_{2}^{2}}.$$
(3.42)

Велика піввісь:

$$a = \frac{r_2 \mu}{2\mu - \left| \overrightarrow{r_2} \right|^2 r_2}.$$
(3.43)

Ексцентриситет та істинна аномалія:

$$\begin{cases} e \cos \mathbf{V} = \frac{p}{r_2} - 1, \\ e \sin \mathbf{V} = \sqrt{\frac{p}{\mu}} \frac{x_2 x_2 + y_2 y_2 + z_2 z_2}{r_2}. \end{cases}$$
(3.44)

Нахил:

$$\cos i = \frac{h_{SZ}}{\sqrt{p\,\mu}}.\tag{3.45}$$

Довгота висхідного вузла:

$$\begin{cases} \sin \Omega = \frac{h_{SX}}{\sqrt{\mu p} \sin i}, \\ \cos \Omega = \frac{h_{SY}}{\sqrt{\mu p} \sin i}. \end{cases}$$
(3.46)

В Додатку С на Рис. С.1 – Рис. С.18 наведені графіки змін Кеплерових елементів орбіти (велика піввісь, ексцентриситет, нахил, аргумент перицентру і довгота висхідного вузла) для обраних дев'яти систем малих тіл Сонячної системи. У всіх Кеплерових елементах орбіт всіх розглянутих систем виявлені періодичні зміни. За допомогою програмного пакета MCV [4] визначені основні періоди змін Кеплерових елементів орбіт (Таблиця 3.8) для девяти обраних систем. І для: (136617) 1994 СС – **АЗЗ**; (87) Sylvia – Головний пояс; (136108) Наитеа – **ТНО**; з трьох найчисельніших груп малих тіл в Сонячній системи в таблиці Таблиця 3.9 наведені співідношення з різними періодами, мо ймовірно є чинниками цих збурень.

Таблиця 3.4.

Назва	Геометричне альбедо	Діаметр, км	Габаритні розміри, км	Маса, кг
(15) Eugenia	0.046 ± 0.006	206.14 ± 6.22	200×147×105	$(5.6300 \pm 0.0003) \times 10^{18}$
(45) Eugenia	[54]	[54]	[44]	[6]
(45) Eugenia,	0.046 ± 0.006	7 ± 2		$(1.975 \pm 2.605/1.934) \times 10^{14}$
satellite Petit-Prince	[54]	[48]	-	[48]
(45) Eugenia,	0.046 ± 0.006	5 ± 1		$(7.199 \pm 6.372/3.848) \times 10^{13}$
satellite Princesse	[54]	[48]	-	[48]
(87) Sulvia	0.036 ± 0.008	286 ± 11	$384 \times 264 \times 232$	$(1.480 \pm 0.006) \times 10^{19}$
(87) Sylvia	[54]	[45]	[45]	[6]
(87) Sylvia,	0.036 ± 0.008	10.8 ± 5.6		$(7.915 \pm 22.109/7.105) \times 10^{14}$
satellite Romulus	[54]	[25]	-	[25]
(87) Sylvia,	0.036 ± 0.008	10.6 ± 1.6		$(7.483 \pm 4.877/3.285) \times 10^{14}$
satellite Remus	[54]	[25]	-	[25]
(00) Antiona	0.062 ± 0.007	87.8 ± 1	$93.0\times87.0\times83.6$	$8.28 \times 10^{17} \pm 2.2 \times 10^{16}$
(90) Antiope	[54]	[18]	[18]	[18]
(90) Antiope,	0.062 ± 0.007	83.8 ± 1.0	$89.4\times82.8\times79.6$	$3.86 \times 10^{17} \pm 1.54 \times 10^{16}$
satellite S/2000 (90) 1	[54]	[18]	[18]	[18]
(66301) 1000 KW4	0.23	1.317 ± 0.04	$1.532 \times 1.495 \times 1.347$	$(2.490 \pm 0.054) \times 10^{12}$
(00391) 1999 KW4	[105]	[58]	[58]	[58]
(66391) 1999 KW4,	0.23	0.451 ± 0.027	$0.571 \times 0.463 \times 0.349$	$(9.462 \pm 3.176/2.558) \times 10^{10}$
satellite"Beta"	[105]	[58]	[58]	[58]
(124240) Dluto	0.56	2374 ± 8		$(1.3030 \pm 0.0027) \times 10^{22}$
(134340) Fluto	[43]	[69]	-	[105]
(134340) Pluto,	0.56	1212 ± 6		$(1.587 \pm 0.015) \times 10^{21}$
satellite Charon	[43]	[69]	-	[105]
(134340) Pluto,	0.465 ± 0.035	43	$50 \times 35 \times 33$	$(4.5 \pm 4.0) \times 10^{16}$
satellite Nix	[69]	[105]	[66]	[105]
(134340) Pluto,	0.51	38	$65 \times 45 \times 25$	$(4.8 \pm 4.2) \times 10^{16}$
satellite Hydra	[69]	[105]	[66]	[105]
(134340) Pluto,	0.5	13	$19 \times 10 \times 9$	$(1.6 \pm 0.9) \times 10^{16}$
satellite Kerberos	[105]	[105]	[66]	[105]
(134340) Pluto,	0.5	10	$16 \times 9 \times 8$	7.5×10^{15}
satellite Styx	[105]	[105]	[66]	[105]

Фізичні параметри обраних подвійних і кратних малих тіл Сонячної системи та їх супутників

(12(109) Цантаа	0.663 ± 0.063	1379 ± 57	1960 × 1518 × 996	$4.03 \times 10^{21} \pm 4 \times 10^{19}$
(150108) Haumea	[60]	[60]	[60]	[61]
(136108) Haumea,	0.8 ± 0.07	320		$5.10 \times 10^{19} \pm 6.35 \times 10^{18}$
satellite Hi'iaka	[60]	[60]	-	[61]
(136108) Haumea,	0.8 ± 0.2	160		$6.37 \times 10^{18} \pm 7.94 \times 10^{17}$
satellite Namak	[60]	[61]	-	[61]
(136617) 1994 CC	0.42 ± 0.1	0.62 ± 0.06	$0.69 \times 0.67 \times 0.64$	$(2.660 \pm 0.329) \times 10^{11}$
	[13]	[13]	[13]	[23]
(136617) 1994 CC,	0.42 ± 0.1	0.113 ± 0.03		$(1.587 \pm 0.620/0.541) \times 10^9$
satellite "Beta"	[13]	[13]	-	[13]
(136617) 1994 CC,	0.42 ± 0.1	0.08 ± 0.03		$(5.630 \pm 13.187/4.648) \times 10^8$
satellite "Gamma"	[13]	[13]	-	[13]
(152501) 2001 SN262	0.04	2.6		$(9.51 \pm 0.13) \times 10^{12}$
(133391) 2001 31203	[55]	[24]	-	[23]
(153591) 2001 SN263,	0.04	1.06		$(5.301 \pm 0.935) \times 10^{11}$
satellite "Beta"	[55]	[24]	-	[24]
(153591) 2001 SN263,	0.04	0.46		$(4.332 \pm 0.765) \times 10^{10}$
satellite "Gamma"	[55]	[24]	-	[24]
(285446) Manua	0.1 ± 0.04	$160 \pm 24/44$		$(1.940 \pm 0.036) \times 10^{18}$
(383440) Mallwe	[37]	[37]	-	[37]
(385446) Manwe,	0.1 ± 0.04	$92 \pm 14/26$		$(3.058 \pm 3.178/2.305) \times 10^{17}$
satellite Thorondor	[37]	[37]	-	[37]

Програма "Multi-Column View" (MCV) призначена для перегляду і редагування багатоканальних часових рядів. Вона дозволяе отримати період або періоди коливань в часових рядах спостережень або чисельно отриманих результатах.

У супутників кожної системи деякі періоди коливань Кеплерових елементів орбіти збігаються, що може бути наслідком одного і того ж впливу, як наслідок, в астероїдних системах (136617) 1994 СС, (87) Sylvia супутники знаходяться в орбітальних резонансах [76], а в (136108) Наитеа наближуються до нього.

Таблиця 3.5.

	•	-		•	-
Астероїдна система	C_{20}	C_{21}	C_{22}	S ₂₁	S_{22}
(15) Eugonia	-0.01362	0.01085	0.00316	0.00798	0.00690
(43) Eugenia	± 0.00043	± 0.00035	± 0.00010	± 0.00025	± 0.00045
(97) Sulvia	-0.05319	0.06491	0.01888	0.04462	0.03077
(87) Sylvia	± 0.00024	± 0.00029	± 0.00008	± 0.00020	± 0.00265
(00) Antiona	-0.04946	0.25747	0.01192	0.24086	0.10718
(90) Antiope	± 0.00048	± 0.00247	$\begin{array}{c} 0.01172 \\ \pm 0.00011 \\ \end{array} \begin{array}{c} 0.24000 \\ \pm 0.00231 \\ \end{array}$	± 0.00231	± 0.00548
(90) Antiope,	-0.09854	0.48340	0.02573	0.44771	0.20113
satellite S/2000 (90) 1	± 0.00238	± 0.01169	± 0.00062	± 0.01083	± 0.01345
(66201) 1000 KWA	-0.02795	0.09075	0.00164	0.08856	0.02556
(00391) 1999 KW4	± 0.00067	± 0.00291	± 0.00004	± 0.00214	± 0.00406
(66391) 1999 KW4,	-0.05840	0.05881	0.01099	0.04769	0.01980
satellite"Beta"	$\pm 0.01473/0.02112$	$\pm 0.01484/0.02127$	$\pm 0.00277/0.00397$	$\pm 0.01203/0.01724$	$\pm 0.00660/0.01090$
(134340) Pluto,	-0.03807	0.06091	0.01569	0.04264	0.01898
satellite Nix	$\pm 0.01767/0.29995$	$\pm 0.02827/0.47988$	$\pm 0.00782/0.12361$	$\pm 0.01979/0.33592$	$\pm 0.00893/0.15183$

Розраховані коефіцієнти розкладання гравітаційного поля компонентів обраних систем малих тіл

(134340) Pluto, satellite Hydra	-0.18704 ± 0.08606/1.28909	$\begin{array}{c} 0.09118 \\ \pm \ 0.04195 / 0.62843 \end{array}$	$\begin{array}{c} 0.04115 \\ \pm \ 0.01893 / 0.28360 \end{array}$	$\begin{array}{c} 0.06313 \\ \pm \ 0.02904 / 0.43507 \end{array}$	0.04822 ± 0.02250/0.33752
(134340) Pluto, satellite Kerberos	-0.00670 ± 0.00236/0.00841	$\begin{array}{c} 0.00575 \\ \pm \ 0.00203 / 0.00722 \end{array}$	0.00293 ± 0.00103/0.00367	$\begin{array}{c} 0.00303 \\ \pm \ 0.00107 / 0.00380 \end{array}$	$\begin{array}{c} 0.00188 \\ \pm \ 0.00068 / 0.00241 \end{array}$
(134340) Pluto, satellite Styx	-0.01138 ± 0.00015	$\begin{array}{c} 0.01046 \\ \pm \ 0.00014 \end{array}$	$\begin{array}{c} 0.00477 \\ \pm \ 0.00006 \end{array}$	$\begin{array}{c} 0.00588 \\ \pm \ 0.00008 \end{array}$	$\begin{array}{c} 0.00346 \\ \pm \ 0.00001 \end{array}$
(136108) Haumea	-0.79662 ± 0.03020	0.56049 ± 0.02125	$\begin{array}{c} 0.14712 \\ \pm \ 0.00558 \end{array}$	0.43409 ± 0.01646	$\begin{array}{c} 0.14381 \\ \pm \ 0.01424 \end{array}$
(136617) 1994 CC	-0.01339 ± 0.00019	0.08386 ± 0.00120	0.00172 ± 0.00002	0.08143 ± 0.00117	0.02090 ± 0.00834

В Таблиці 3.9 наведені співвідношення між величинами коливань Кеплерових елементів орбіт і орбітальними барицентричними періодами астероїдних систем (Таблиця 3.3), орбітальними періодами супутників астероїдів (Таблиці 3.6 та 3.7), орбітальними періодами найближчих великих планет: Землі – 365.256 діб, Марса – 686.980 діб, Юпітера – 4332.589 діб и Нептуна – 60189 діб [103].

Автором виявлено, що періоди коливань величин Кеплерових елементів орбіт, які відносяться з орбітальними барицентричними періодами астероїдних систем як невеликі цілі числа, є наслідком зближення з Сонцем при русі по еліптичним орбітам. Періоди коливань величин Кеплерових елементів орбіт, які відносяться з орбітальними періодами супутників астероїдів як невеликі цілі числа, виникають як наслідок зближення з центральним асиметричним астероїдом при русі по еліптичним орбітам. Періоди коливань величин Кеплерових елементів орбіт, які відносяться з орбітальними періодами супутників астероїдів як невеликі цілі числа, виникають як наслідок зближення з центральним асиметричним астероїдом при русі по еліптичним орбітам. Періоди коливань величин Кеплерових елементів орбіт, які відносяться з орбітальним періодами коливань величин Кеплерових елементів орбіт, які відносяться з орбітальним леріоди коливань величин Кеплерових елементів орбіт, які відносяться з орбітальним періоди коливань величин Кеплерових елементів орбіт, які відносяться з орбітальним періоди коливань величин Кеплерових елементів орбіт, які відносяться з орбітальним періоди коливань величин Кеплерових елементів орбіт, які відносяться з орбітальним періоди найближчої з великих планет, виникають в результаті періодичних зближень з ними.

Таблиця 3.6.

Назва	а, к.м.	e	i, °	ω, °	Ω , °	<i>M</i> ₀ , °	Epoch
(45) Eugenia, satellite Petit- Prince	1164.42 ± 0.03 [6]	0.002 ± 0.0012 [6]	8.0 ± 0.1 [45]	138 ± 9 [105]	201.93 ± 0.33 [6]	5 ± 9 [6]	2003 Dec 06.5
(45) Eugenia, satellite Princesse	610.59 ± 0.06 [6]	0.11 ± 0.02 [6]	-	95 ± 5 [105]	206.67 ± 1.72 [6]	-187 ± 5 [6]	2003 Dec 06.5
(87) Sylvia, satellite Romulus	1351.35 ± 0.01 [6]	0.0069 ± 0.0037 [6]	1.7 ± 1.0 [45]	175 ± 23 [105]	193.17 ± 1.85 [6]	167 ± 23 [6]	2004 Sep 01.0
(87) Sylvia, satellite Remus	701.64 ± 0.02 [6]	0.093 ± 0.021 [6]	2.0 ± 1.0 [45]	135 ± 9 [105]	194.28 ± 6.27 [6]	-79 ± 9 [6]	2004 Sep 01.0

Кеплерові елементи орбіт супутників систем малих тіл

(90) Antiope, <i>satellite</i> <i>S</i> /2000 (90) 1	171 ± 1 [18]	0.003 ± 0.003 [18]	63.7 ± 2.0 [18]	-	-	-	-
(66391) 1999 KW4, satellite"Beta"	2.548 ± 0.015 [58]	0.0004 ± 0.0019 [58]	156.1 ± 2 [58]	319.7 ± 182 [58]	105.4 ± 3 [58]	-	-
(136108) Haumea, satellite Hi'iaka	49880 ± 198 [61]	0.0513 ± 0.0078 [61]	126.356 ± 0.064 [61]	154.1 ± 5.8 [61]	206.766 ± 0.033 [61]	152.8 ± 6.1 [61]	-
(136108) Haumea, satellite Namak	25657 ± 91 [61]	0.249 ± 0.015 [61]	113.013 ± 0.075 [61]	178.9 ± 2.3 [61]	205.016 ± 0.228 [61]	178.5 ± 1.7 [61]	-
(136617) 1994 CC, satellite "Beta"	1.729 ± 0.008 [23]	0.002 ± 0.015 [23]	83.376 ± 11.158 [23]	130.980 ± 43.647 [23]	59.209 ± 3.91 [23]	233.699 ± 43.941 [23]	2009 Jun 12.0
(136617) 1994 CC, satellite "Gamma"	6.130 ± 0.108 [23]	0.192 ± 0.014 [23]	71.709 ± 8.994 [23]	96.229 ± 5.017 [23]	96.229 ± 5.017 [23]	6.070 ± 6.187 [23]	2009 Jun 12.0
(153591) 2001 SN263, satellite "Beta"	16.633 ± 0.163 [23]	0.015 ± 0.009 [23]	157.486 ± 1.819 [23]	131.249 ± 21.918 [23]	161.144 ± 13.055 [23]	212.658 ± 10.691 [23]	2008 Feb 13.0
(153591) 2001 SN263, satellite "Gamma"	3.804 ± 0.002 [23]	0.016 ± 0.002 [23]	165.045 ± 12.409 [23]	292.435 ± 53.481 [23]	198.689 ± 61.292 [23]	248.816 ± 11.509 [23]	2008 Feb 13.0
(385446) Manwe, satellite Thorondor	6674 ± 41 [37]	0.5632 ± 0.0070 37]	25.58 ± 0.23 [37]	250.8 ± 1.9 [37]	163.56 ± 0.78 [37]	126.51 ± 0.49 [37]	2007 Oct 26.5

Вище сказано, що у супутників систем деякі періоди коливань Кеплерових елементів орбіт збігаються, що може бути викликано одним впливом, за допомогою Таблиці 3.9, можна зробити висновки про причини цих збігів. У астероїднії системі (87) Sylvia у супутника Romulus *Period* $2_e \approx Period$ 2_{ω} результат орбітального руху супутника, *Period* $1_i \approx Period$ 1_{Ω} результат орбітального руху астероїдної системи (87) Sylvia, як і у супутника Remus *Period* $2_a \approx Period$ 1_e , а відповідність *Period* $3_a \approx Period$ 2_e є наслідком періодичних зближень з Юпітером. Так само видно однакові коливання в нахилі орбіт *Period* 2_i , *Period* 3_i , *Period* 4_i , обох супутників системи. *Period* 2_i , результат орбітального руху системи, а інші, результат орбітального руху супутників. У супутників астероїдної системи (136108) Наитеа, добре виділяються коливання з великими і малими періодами, і як видно з Таблиці 3.9, в кожному Кеплеровому

Положення та швидкість супутників системи (134340) Pluto [14]

Супутник		Положення, км		Швидкість, км/с
	x	1297.17438478526	Vx	0.1453959508510873
Charon	у	3752.60226174718	Vy	0.1297771902069882
	z	17011.90583845352	Vz	-0.0397230039699411
	x	-30572.84277725838	Vx	0.0232883188913688
Styx	у	-26535.81343448966	Vy	0.0427977975396927
	z	12311.29089587663	Vz	0.1464990283534413
	x	9024.34878023784	Vx	0.1004334400015913
Nix	у	15210.73701650077	Vy	0.0865524814427462
	z	45591.75735722126	Vz	-0.0479498746416020
	x	23564.20702505210	Vx	0.0792537025667567
Kerberos	у	28380.03995076242	Vy	0.0630220099842493
	z	44578.02582182780	Vz	-0.0817084451068904
	x	-43331.32611324427	Vx	-0.0374001037580065
Hydra	у	-43628.45759453865	\overline{Vy}	-0.0184905610710285
	Z.	-20506.54193573317	Vz	0.1157937282701088

(в баріцентричній системі координат)

елементі орбіти супутників є однакові періоди коливань. *Period* 1_a , *Period* 1_e , *Period* 1_i , *Period* 1_{Ω} , коливання з великими періодами, викликані орбітальним рухом астероїдної системи (136108) Наитеа. Відповідність короткоперіодичних коливань *Period* 2_i , *Period* 1_{ω} , *Period* 2_{ω} , *Period* 2_{Ω} , Кеплерових елементів орбіти, залежить від орбітального руху супутників. Тільки у одного супутника Gamma астероїдної системи (136617) 1994СС, знайдені відповідності в коливаннях Кеплерових елементів орбіти: *Period* $1_a \approx Period$ 3_e , результат орбітального руху астероїдної системи (136617) 1994СС і *Period* $4_e \approx Period$ 2_{ω} , результат періодичних зближень з Землею.

Таблиця 3.8.

Номер	(45) Eugenia		(87) Sylvia		(90) Antiope	(66391) 1999 KW4
періода	Petit-Prince	Princesse	Romulus	Remus	S/2000 (90)1	Beta
Period 1: a	2.930	1.016	1.234	8.007	1.325	3.616
Period 2: a	2.339	1.682	0.225	0.609	-	1.312
Period 3: a	-	-	0.165	0.276	-	-
Period 4: a	-	-	0.103	-	-	-
Period 1: e	2.927	1.015	13.710	0.609	6.816	1.562
Period 2: e	2.338	1.590	0.193	0.276	1.645	1.015

Періоди зміни Кеплерових елементів орбіт супутників (в роках)

Period 3: e	-	-	-	0.145	1.325	-
Period 4: e	-	-	-	0.113	1.109	-
Period 1: i	7.262	63.926	11.638	7.944	1.325	2.052
Period 2: i	4.040	17.751	1.287	1.287	-	1.094
Period 3: i	3.733	12.532	0.223	0.223	-	-
Period 4: i	-	-	0.193	0.195	-	-
<i>Period 1: ω</i>	6.216	59.067	5.923	6.903	4.348	1.691
<i>Period 2:</i> ω	4.577	7.169	0.196	0.586	2.658	1.378
Period 3: ω	-	1.616	-	0.293	1.906	1.075
Period 4: ω	-	1.247	-	-	-	-
Period 1: Ω	16.641	4.322	11.638	1.159	1.037	2.046
Period 2: Ω	4.949	1.638	0.193	0.579	-	1.313
Period 3: Ω	-	1.095		0.386	-	1.078
Period 4: Ω	-	-	-	0.283	-	-

Різна кількість відповідностей у коливаннях Кеплерових елементів орбіт супутників, для різних астероїдних систем, може бути викликана їх розташуванням в Сонячній системі. Для (87) Sylvia і (136617) 1994СС діють більше збурюючих факторів при русі їх супутників в порівнянні з супутниками (136108) Наитеа.

Крім того, знайдені вікові зміни в аргументі перицентра і довготі висхідного вузла супутників Petit-Prince і Princesse астероїда (45) Eugenia та супутників Romulus і Remus астероїда (87) Sylvia; нахилу, аргументі перицентра і довготі висхідного вузла Charon системи (134340) Pluto, аргументі перицентра супутників

Таблиця 3.8. (продовження)

Номер		(385446) Manwe				
періода	Charon	Nix	Hydra	Kerberos	Styx	Thorondor
Period 1: a	19.651	19.690	2.057	2.429	1.072	5.624
Period 2: a	2.051	-	1.959	1.162	-	2.812
Period 3: a	-	-	-	-	-	1.934
Period 1: e	14.029	19.690	1.958	2.434	1.071	64.746
Period 2: e	3.577	2.112	-	1.315	-	5.621
Period 3: e	2.275	-	-	1.161	-	2.811
Period 4: e	-	-	-	-	-	1.930
Period 1: i	82.788	4.692	13.951	9.043	2.632	>100
Period 2: i	61.588	-	-	-	-	51.797
Period 3: i	-	-	-	-	-	6.239
Period 4: i	-	-	-	-	-	2.949

Періоди зміни Кеплерових елементів орбіт супутників (в роках)

Period 1: ω	>100	3.574	14.127	9.208	55.804	88.597
<i>Period 2:</i> ω	14.088	1.639	2.715	3.311	1.051	41.396
<i>Period 3:</i> ω	3.577	1.123	2.277	-	-	-
<i>Period 3:</i> ω	2.276	-	-	-	-	-
Period 1: Ω	>100	4.694	13.951	9.043	2.632	>100
Period 2: Ω	13.990	-	-	-	-	52.064
Period 3: Ω	3.576	-	-	-	-	-
Period 4: Ω	2.276	-	-	-	-	-

Ні'іака і Namaka об'єкта (136108) Наитеа; ексцентриситеті, аргументі перицентра і довготі висхідного вузла супутника Веta астероїда (136617) 1994 СС; нахилі, аргументі перицентра і довготі висхідного вузла супутника Gamma астероїда (136617) 1994 СС; нахилі, аргументі перицентра і довготі висхідного вузла супутника "Веta" астероїда (153591) 2001 SN2; аргументі перицентра і довготі висхідного вузла супутника "Gamma" астероїда (153591) 2001 SN2; нахилі, аргументі перицентра і довготі висхідного вузла супутника "Gamma" астероїда (153591) 2001 SN2; нахилі, аргументі перицентра і довготі висхідного вузла супутника "Gamma" астероїда (153591) 2001 SN2; нахилі, аргументі перицентра і довготі висхідного вузла супутника "Gamma" астероїда (153591) 2001 SN2; нахилі, аргументі перицентра і довготі висхідного вузла супутника "Gamma" астероїда (153591) 2001 SN2; нахилі, аргументі перицентра і довготі висхідного вузла супутника "Gamma" астероїда (153591) 2001 SN2; нахилі, аргументі перицентра і довготі висхідного вузла супутника "Gamma" астероїда (153591) 2001 SN2; нахилі, аргументі перицентра і довготі висхідного вузла супутника "Thorondor" об'єкта (385446) Manwe.

Таблиця 3.8. (продовження)

Номер	(136108) Haumea		(136617) 1994CC		2001 SN263	
періода	Hi'iaka	Namaka	Beta	Gamma	Beta	Gamma
Period 1: a	25.019	25.019	0.872	4.259	1.369	1.368
Period 2: a	0.458	1.118	-	0.411	-	1.035
Period 3: a	0.325	0.443	-	-	-	-
Period 1: e	>100	>100	0.380	>100	4.249	4.276
Period 2: e	1.168	9.099	-	21.293	2.019	-
Period 3: e	-	0.441	-	4.259	1.370	-
Period 4: e	-	-	-	1.599	-	-
Period 5: e	-	-	-	0.455	-	-
Period 1: i	18.883	18.883	20.137	20.016	>100	3.202
Period 2: i	0.192	0.192	-	-	3.201	-
Period 1: ω	0.380	0.381	10.110	20.424	78.296	4.052
Period 2: ω	0.190	0.190	5.048	1.599	37.549	-
Period 3: ω	-	-	3.367	-	-	-
Period 1: Ω	18.883	18.883	16.407	0.190	>100	3.202
Period 2: Ω	0.188	0.188	-	-	52.882	-

Періоди зміни Кеплерових елементів орбіт супутників (в роках)

В результаті, ми бачимо коливання Кеплерових елементів орбіт (Таблиця 3.8), які спостерігаються для всіх тіл Сонячної системи. Для великих планет

вивчені вікові збурення [53]. В астероїдних системах спостерігаються як вікові збурення так і короткоперіодичні, що в свою чергу можна пояснити наслідком менших відносних мас даних систем в порівнянні з великими планетами.

Таблиця 3.9.

Співвідношення між орбітальними періодами і періодами коливань Кеплерових елементів орбіти (в роках)

(87) Sylvia	(136108) Haumea	(136617) 1994CC	
Romulus	Hi'iaka	Beta	
$P1_a \times 48 - P_{Jupiter} \times 5 = -0.064$	$P1_a \times 34 - P_{Haumea} \times 3 = -0.19$	$Pl_a \times 8 - P_{Earth} \times 7 = -0.027$	
$P2_a \times 1 - P_{Romulus} \times 23 = -0.001$	$P2_a \times 3 - P_{Hi'iaka} \times 10 = 0.02$	-	
$P3_a \times 1 - P_{Romulus} \times 17 = -0.003$	$P3_a \times 5 - P_{Hi'iaka} \times 12 = -0.001$	-	
$P4_a \times 1 - P_{Romulus} \times 10 = 0.004$	-	-	
$P1_e \times 9 - P_{Sylvia} \times 19 = -0.050$	$P1_e \times 2 - P_{Haumea} \times 1 \approx 0$	$P1_e \times 5 - P_{Mars} \times 1 = 0.019$	
$P2_e \times 1 - P_{Romulus} \times 20 = -0.004$	$P2_e \times 1 - P_{Hi'iaka} \times 9 = -0.05$	-	
$P1_i \times 24 - P_{Sylvia} \times 43 = -0.056$	$P1_i \times 15 - P_{Haumea} \times 1 = -0.36$	$P1_i \times 5 - P_{1994CC} \times 48 = 0.076$	
$P2_i \times 5 - \times P_{Sylvia} \times 1 = -0.064$	$P2_i \times 2 - P_{Hi'iaka} \times 3 = -0.02$	-	
$P3_i \times 1 - P_{Romulus} \times 23 = -0.0035$	-	-	
$P4_i \times 1 - P_{Romulus} \times 20 = -0.004$	-	-	
$P1_{\omega} \times 2 - P_{Jupiter} \times 1 = -0.016$	$P1_{\omega} \times 1 - P_{Hi'iaka} \times 3 = -0.03$	$P1_{\omega} \times 8 - P_{Mars} \times 43 = 0.006$	
$P2_{\omega} \times 1 - P_{Romulus} \times 20 = -0.001$	$P2_{\omega} \times 2 - P_{Hi'iaka} \times 3 = -0.03$	$P2_{\omega} \times 1 - P_{Earth} \times 5 = 0.048$	
-	-	$P3_{\omega} \times 5 - P_{1994CC} \times 8 = 0.066$	
$P1_{\Omega} \times 24 - P_{Sylvia} \times 43 = -0.056$	$P1_{\Omega} \times 15 - P_{Haumea} \times 1 = -0.36$	$P1_{\Omega} \times 6 - P_{1994CC} \times 47 = -0.069$	
$P2_{\Omega} \times 1 - P_{Romulus} \times 20 = -0.004$	$P2_{\Omega} \times 3 - P_{Hi'iaka} \times 4 = -0.02$	-	
(87) Sylvia	(136108) Haumea	(136617) 1994CC	
Remus	Namaka	Gamma	
$P1_a \times 40 - P_{Jupiter} \times 27 = 0.026$	$P1_a \times 34 - P_{Haumea} \times 3 = -0.19$	$P1_a \times 1 - P_{1994CC} \times 2 = 0.067$	
$P2_a \times 32 - P_{Sylvia} \times 3 = -0.007$	$P2_a \times 1 - P_{Namaka} \times 22 = 0.02$	$P2_a \times 5 - P_{1994CC} \times 1 = -0.042$	
$P3_a \times 43 - P_{Jupiter} \times 1 = 0.025$	$P\mathcal{J}_a \times 1 - P_{Namaka} \times 9 = -0.01$	-	
$P1_e \times 32 - P_{Sylvia} \times 3 = -0.007$	$P1_e \times 2 - P_{Haumea} \times 1 \approx 0$	-	
$P2_e \times 43 - P_{Jupiter} \times 1 = 0.025$	$P2_e \times 163 - P_{Neptune} \times 9 = 0.09$	$P2_e \times 3 - P_{Mars} \times 34 = -0.068$	
$P3_e \times 1 - P_{Remus} \times 38 = -0.001$	$P3_e \times 1 - P_{Namaka} \times 9 = -0.01$	$P3_e \times 1 - P_{1994CC} \times 2 = 0.067$	
$P4_e \times 1 - P_{Remus} \times 29 = 0.002$	-	$P4_e \times 5 - P_{Earth} \times 8 = -0.005$	
-	-	$P5_e \times 2 - P_{Earth} \times 1 = -0.091$	
$P1_i \times 9 - P_{Sylvia} \times 11 = 0.027$	$P1_i \times 15 - P_{Haumea} \times 1 = -0.36$	$P1_i \times 1 - P_{Earth} \times 20 = 0.016$	
$P2_i \times 5 - P_{Sylvia} \times 1 = -0.064$	$P2_i \times 1 - P_{Namaka} \times 4 = -0.01$	-	
$P3_i \times 29 - P_{Sylvia} \times 1 = -0.026$	-	-	
$P4_i \times 33 - P_{Sylvia} \times 1 = -0.069$	-	-	
$P1_{\omega} \times 16 - P_{Sylvia} \times 17 = -0.002$	$P1_{\omega} \times 1 - P_{Namaka} \times 8 = -0.02$	$P1_{\omega} \times 4 - P_{1994CC} \times 39 = -0.046$	
$P2_{\omega} \times 11 - P_{Sylvia} \times 1 = -0.047$	$P2_{\omega} \times 1 - P_{Namaka} \times 4 = -0.01$	$P2_{\omega} \times 5 - P_{Earth} \times 8 = 0.005$	
$P3_{\omega} \times 22 - P_{Sylvia} \times 1 = -0.047$	-	-	
$P1_{\Omega} \times 28 - P_{Sylvia} \times 5 = -0.046$	$P1_{\Omega} \times 15 - P_{Haumea} \times 1 = -0.36$	$P1_{\Omega} \times 1 - P_{Gamma} \times 8 = 0.006$	
$P2_{\Omega} \times 41 - P_{Jupiter} \times 2 = 0.027$	$P2_{\Omega} \times 37 - P_{Namaka} \times 4 = -0.01$	-	
$P3_{\Omega} \times 17 - P_{Sylvia} \times 1 = 0.068$	-	-	
$P4_{\Omega} \times 23 - P_{Sylvia} \times 1 = 0.012$	-	-	

3.5 Резонанс Когаі в системах малих тіл

Ще один з видів резонансів, що зустрічається в Сонячній системі – це ефект Когаі або резонанс Когаі. Резонанс Когаі [41], [53] це періодична зміна співвідношення ексцентриситету і нахилу орбіти під впливом потужного тіла або тіл (в нашому випадку центральне тіло системи), за умови, що нахил орбіт супутника перевищує граничне значення. Граничне значення або кут Когаі – це мінімальний кут при якому може спостерігатися даний ефект. Він дорівнює 39.2° для прямого руху і 140.8° для ретроградного.

Якщо супутник знаходиться в резонансі Kozai, то повинна виконуватися рівність:

$$\sqrt{1-e^2}\cos i = const \ . \tag{3.47}$$

Для всіх супутників дев'яти обраних малих тіл була розрахована величина (3.47), на проміжку часу 100 років і 1000 років. На Рис. С.19 - С.22 показана зміна цієї величини.

Видно, що супутник S/2000 (90) 1 астероїда (90) Antiope, супутник Namaka THO (136108) Наитеа та супутники Beta і Gamma астероїда (136617) 1994 СС не знаходяться в резонансі Kozai.

Супутник Princesse астероїда (45) Eugenia, супутник Веta астероїда (66391) 1999 KW4, супутник Ні'іаka THO (136108) Наитеа та супутник Gamma астероїда (153591) 2001 SN263 наближаються до резонансу Kozai.

А супутник Petit-Prince астероїда (45) Eugenia, супутники Romulus і Remus астероїда (87) Sylvia, супутники Charon, Styx, Nix, Kerberos і Hydra карликової планети (134340) Pluto, супутник Beta астероїда (153591) 2001 SN263 і супутник Thorondor подвійного THO (385446) Manwe з точністю до тисячних величини (3.11) знаходиться в резонансі Kozai.

3.6 Точність інтегрування диференціальних рівнянь руху

При використанні чисельного інтегрування рівнянь руху потрібен обов'язковий контроль збіжності моделі або, так званий, контроль кроку інтегрування. Методами прямого-зворотнього інтегрування і подвоєння кроку інтегрування рівнянь руху на інтервалі 100 років з кроком 30 секунд, отримана величина розбіжності чисельної моделі побудованої автором, яка не перевищує $10^{-6} - 10^{-7}$ метра.

Рис. 3.15. Розбіжність в положенні супутника астероїда 1999КW4, при використані прямого – зворотнього метода перевірки точності інтегрування диференційних рівнянь руху

Використовуючи закон збереження енергії, маємо: в замкнутій системі *N* тіл, сума кінетичної (*T*) та потенційної (–*U*) енергій постійна:

$$T - U = const. \tag{3.48}$$

Тому можливо застосувати цю умову, як критерій стійкості чисельної моделі. Для зручності використання, запишемо вираз (3.48) в наступному вигляді:

Рис. 3.16. Зміна механічної енергії системи (134340) Pluto при інтегруванні на протязі 1000 років

$$\frac{1}{2}\sum_{i=1}^{N}m_{i}\left(\left(x_{i}'-\frac{\sum_{i=1}^{N}m_{i}x_{i}'}{M}\right)^{2}+\left(y_{i}'-\frac{\sum_{i=1}^{N}m_{i}y_{i}'}{M}\right)^{2}+\left(z_{i}'-\frac{\sum_{i=1}^{N}m_{i}z_{i}'}{M}\right)^{2}\right)-G\sum_{i=1}^{N}\sum_{j=1}^{N}\frac{m_{i}m_{j}}{r_{ij}}=const, (3.49)$$

$$\mathbf{A}\mathbf{E} \ M=\sum_{i=1}^{N}m_{i} \ .$$

На Рис.3.16, наведено приклад зміни механічної енергії системи (134340) Pluto, отриманий з кроком інтегрування 100 секунд. Також для цієї системи контроль кроку інтегрування, методом прямого-зворотнього інтегрування показав найбільшу розбіжність для Kerberos – 50 метрів і метод подвійного кроку інтегрування показав найбільшу розбіжність для Charon – 87 метрів.

Короткі висновки до Розділу З

В Розділі 3 наведені умови розриву 168 астероїдних систем, розраховані резонанси в деяких з них. Вперше наведені орбітальні і фізичні характеристики гіпотетичного супутника-пастуха у астероїда (10199) Chariklo. Детально розглянуті дев'ять систем малих тіл, з подальшим періодограмним аналізом отриманих змін в Кеплерових елементах орбіт. Для трьох з девяти систем, показана залежність змін Кеплерових елементів орбіт від орбітальних періодів близьких планет і руху самої системи по геліоцентричній орбіті.

ВИСНОВКИ

Впроваджено нове програмне забезпечення для пошуку невідомих об'єктів Сонячної системи, що дозволило підвищити проникну здатність телескопа ОМТ-800 з 19^m до 21^m. В результаті оглядових спостережень подвійних і кратних малих тіл Сонячної системи, було відкрито два малих тіла, одне з яких ідентифіковано як раніше загублений астероїд.

Розраховані відстані розриву для 168 подвійних і кратних малих тіл Сонячної системи.

Знайдено 10 орбітальних, 26 спін-орбітальних і 28 спін-спінових резонансів в обраних подвійних і кратних системах малих тіл.

Вперше обчислені: маса, велика піввісь орбіти, орбітальний період, резонанси гіпотетичного супутника-пастуха астероїда (10199) Chariklo.

Вперше обчислені 5 коефіцієнтів розкладання по сферичним функціям потенціалу гравітаційного поля обраних компонентів астероїдних систем. Не всі значення збігаються з отриманими раніше результатами попередніх робіт. Це може бути пов'язано з відмінністю вихідних даних та методами їх отримання.

Побудована чисельна модель руху в системах подвійних та кратних малих тіл Сонячної системи. В моделі враховано тяжіння Сонця та великих планет, асиметрію малих тіл, тиск сонячного світла з урахуванням тіньової функції. Модель дозволила виявити деякі особливості еволюції орбіт супутників в астероїдних системах.

Чисельна модель апробована на подвійних і кратних малих тілах Сонячної системи: (45) Eugenia, (87) Sylvia, (90) Antiope, (66391) 1999 KW4, (134340) Pluto, (136108) Haumea, (136617) 1994 CC, (153591) 2001 SN263, (385446) Manwe. Отримані зміни Кеплерових елементів орбіт на інтервалі 100 років і 1000 років в цілому підтверджують результати, отримані іншими авторами. Знайдено вікові зміни в деяких Кеплерових елементах орбіт супутників. У всіх елементах орбіт обчислені величини періодичних змін і запропоновані можливі причини їх

походження. Так само знайдені однакові періодичні коливання в Кеплерових елементах орбіт одного і того ж супутника.

СПИСОК ВИКОРИСТАНИХ ДЖЕРЕЛ

- 1. Больбасова Л. Адаптивная оптика на пути к решению загадок астрономии / Больбасова Л. // Наука и жизнь. 2012. № 1. С. 70-72.
- Холодова С.Е. Специальные функции в задачах математической физики / С.Е. Холодова, С.И. Перегудин // СПб: НИУ ИТМО. – 2012.
- Andrievsky S.M. A NEW 800 mm AUTOMATIC TELESCOPE / S.M. Andrievsky, I.E. Molotov, N.N. Fashchevsky, S.V. Podlesnyak, V.V. Zhukov, V.V. Kouprianov, S.G. Kashuba, V.I. Kashuba, V.F. Mel'nichenko, Yu.M. Gorbanev // Odessa Astronomical Publications. – 2013. – Vol. 26. – Issue 1. – P 6-25.
- Andronov I.L. ALGORITHM OF THE ARTIFICIAL COMPARISON STAR FOR THE CCD PHOTOMETRY / Andronov I.L., Baklanov A.V. // Astronomy School Reports. – 2004. – Vol. 5. – P 264-272.
- 5. Bazyey A.A. USING OF EVERHART'S METHOD OF 15, 17, 19 AND 21st-ORDER FOR COMPUTATION OF CELESTIAL BODIES' TRAJECTORIES IN THE CIRCUMPLANETARY SPACE / Bazyey A.A., Kara I.V. // Astronomical School's Report. - 2009. – Vol. 6. – Issue 2. – P 155-157.
- Beauvalet L. Multiple asteroid systems (45) Eugenia and (87) Sylvia: Sensitivity to external and internal perturbations / Beauvalet L., and F. Marchis // Icarus. – 2014. – Vol. 241. – P. 13-25.
- 7. Berard D. / Berard D., Sicard B. et al. // American Astronomical Society. 2015.
 Vol. 47. P. 104.02.
- Berthier J. Physical and dynamical properties of the main belt triple Asteroid (87) Sylvia / Berthier, J., F. Vachier, F. Marchis, J. Durech, and B. Carry // Icarus. – 2014. – Vol. 239. – P. 118-130.
- Benner, L. A. M. 2006 VV_2 / L. A. M. Benner, S. J. Ostro, and J. D. Giorgini // Jet Propulsion Laboratory (JPL). – 2007. – Vol. 8826.
- 10.Bonomi R. Observations and Orbits of Comets / Bonomi R., Facchini M., Negrelli P [...] Troianskyi V. [...] // Minor Planet Electronic Circ. – 2014, 2015,

2016, 2017. No.2015-J41, No.2015-Q71, No.2015-U54, No.2015-H37, No.2015-E14, No.2015-N31, No. 2016-Q04, No. 2016-M09, No. 2016-K18, No. 2017-A77.

- 11.Braga-Ribas F. A ring system detected around the Centaur (10199) Chariklo / F.
 Braga-Ribas, B. Sicardy [...] D. G. Lambas // Nature. 2014. Vol. 508. P. 72.
- 12.Brozovic, M. (136617) 1994 CC / Brozovic, M., Benner, L. A. M., Nolan, M. C., Howell, E. S., Magri, C., Giorgini, J. D., Taylor, P. A., Margot, J. L., Busch, M. W., Shepard, M. K., Carter, L. M., Jao, J. S., van Brimmer, J., Franck, C. R., Silva, M. A., Kodis, M. A., Kelley, D. T., Slade, M. A., Bramson, A., Lawrence, K. J., Pollock, J. T., Pravec, P., Reichart, D. E., Ivarsen, K. M., Haislip, J., Nysewander, M. C., & Lacluyze, A. P. // International Astronomical Union Circular. – 2009. – Vol. 9053.
- 13.Brozovic M. Radar and optical observations and physical modeling of triple near-Earth asteroid (136617) 1994 CC / Marina Brozović, Lance A.M. Benner, Patrick A. Taylor, Michael C. Nolan, Ellen S. Howell, Christopher Magri, Daniel J. Scheeres, Jon D. Giorgini, Joseph T. Pollock, Petr Pravec, Adrián Galád, Julia Fang, Jean-Luc Margot, Michael W. Busch, Michael K. Shepard, Daniel E. Reichart, Kevin M. Ivarsen, Joshua B. Haislip, Aaron P. LaCluyze, Joseph Jao, Martin A. Slade, Kenneth J. Lawrence, Michael D. Hicks // Icarus. 2011. Vol. 216. P. 241-256.
- 14.Brozovic M. The orbits and masses of satellites of Pluto / M. Brozovic, M. R. Showalter, R. A. Jacobson, and M. W. Buie // Icarus. 2015. Vol. 246. P. 317-329.
- 15.Brown, M. E. S/2001 (87) 1 / Brown, M. E., and J. L. Margot // International Astronomical Union Circular. 2001. Vol. 7588.
- 16.Brown M. E. S/2005 (2003 EL_61) 2 / Brown M. E. // International Astronomical Union Circular. – 2005. – Vol. 8636.
- 17.Buie M. W. THE ORBIT OF CHARON IS CIRCULAR / Marc W. Buie, David J. Tholen and William M. Grundy // The Astronomical Journal. 2012. Vol. 144. P. 15.

- 18.Descamps P. Figure of the double Asteroid 90 Antiope from adaptive optics and lightcurve observations / P. Descamps, F. Marchis, T. Michalowski, F. Vachier, F. Colas, J. Berthier, M. Assafin, P.B. Dunckel, M. Polinska, W. Pych, D. Hestroffer, K.P.M. Miller, R. Vieira-Martins, M. Birlan, J.-P. Teng-Chuen-Yu, A. Peyrot, B. Payet, J. Dorseuil, Y. Léonie, T. Dijoux // Icarus. 2007. Vol. 187. P. 482-499.
- 19.Duboshin G. N. in: Celestial Mechanics and Astrodynamics / Duboshin G. N. // A Handbook, Moscow, Nauka. – 1976.
- 20.Dunham D. W. Satellite of Minor Planet 532 Herculina Discovered During Occultation / Dunham David W. // The Minor Planet Bulletin. – 1978. – Vol. 6. – P. 13-14.
- 21.Dunham D. W. Possible Observation of a Satellite of a Minor Planet / Dunham David W., Maley Paul D. // The Minor Planet Bulletin. 1977. Vol. 5. P. 16-17.
- 22.Everhart E. Implicit Single-Sequence Methods for Integrating Orbits / Everhart E. // Celestial Mechanics and Dynamical Astronomy. 1974. Vol. 10. P. 35-55.
- 23.Fang, J. Orbits of near-Earth asteroid triples 2001 SN263 and 1994 CC: Properties, origin, and evolution / J. Fang, J.-L. Margot, M. Brozovic, M. C. Nolan, L. A. M. Benner, and P. A. Taylor // The Astronomical Journal. – 2011. – Vol. 141. – P. 154-168.
- 24.Fang, J. Near-Earth binaries and triples: Origin and evolution of spin-orbital properties / Fang, J., and J.-L. Margot // The Astronomical Journal. 2012. Vol. 143. P. 24.
- 25.Fang J. Orbits, masses, and evolution of main belt triple (87) Sylvia / J. Fang, J.-L. Margot, and P. Rojo // The Astronomical Journal. 2012. Vol. 144. P. 70-82.
- 26.Ferraz Mello S. Analytical Study of the Earth's Shadowing Effects on Satellite Orbits / Ferraz Mello S. // Celestial Mechanics. – 1972. – Vol. 5. – P. 80-101.

- 27.Folkner W.M. in: The Planetary and Lunar Ephemerides DE430 and DE431 / W.M. Folkner, James G. Williams, Dale Boggs, Ryan Perk, P. Kuchynka // Interoffice Memo, Jet Propulsion Laboratory, Pasadena, CA. 2014.
- 28.Fornasier S. TNOs are Cool: A survey of the trans-Neptunian region VIII. Combined Herschel PACS and SPIRE observations of nine bright targets at 70–500 μm / S. Fornasier, E. Lellouch, T. Müller, P. Santos-Sanz, P. Panuzzo, C. Kiss, T. Lim, M. Mommert, D. Bockelée-Morvan, E. Vilenius, J. Stansberry, G. P. Tozzi, S. Mottola, A. Delsanti, J. Crovisier, R. Duffard, F. Henry, P. Lacerda, A. Barucci and A. Gicquel // Astronomical and Astrophysical. 2013. Vol. 555. Article A15.
- 29.Frouard J. Evolution of Small Binary Asteroids with the Binary YORP Effect / Frouard Julien // American Astronomical Society. 2013. DDA meeting #44. id.102.03.
- 30.Gipson L. New Horizons Picks Up Styx / Gipson L. // NASA. [сайт] URL: [https://www.nasa.gov/nh/new-horizons-picks-up-styx] (2015).
- 31.Goldreich P. Tidal Evolution of Rubble Piles / Goldreich Peter, Re'em Sari // The Astrophysical Journal. 2009. Vol. 691. P. 54-60.
- 32.Green D. W. E. Satellites of minor planets / Green D. W. E. // International Astronomical Union Circular. 2000. Vol. 7503.
- 33.Green D. W. E. 2003 EL_61, 2003 UB_313, and 2005 FY_9 / Green D. W. E. // International Astronomical Union Circular. 2005. Vol. 8577.
- 34.Green D. W. E. Satellites of Pluto / Green D. W. E. // International Astronomical Union Circular. – 2006. – Vol. 8723.
- 35.Green D. W. E. (136108) Haumea / Green D. W. E. // International Astronomical Union Circular. – 2008. – Vol. 8976.
- 36.Green D. W. E. New names of satellites of (134340) Pluto / Green D. W. E. // Central Bureau Electronic Telegrams – 2013. – Vol. 3575.
- 37.Grundy W. M. Orbit status of known binary TNOs / Grundy, W. M., et al. // [Електронний pecypc] – URL: [http://www2.lowell.edu/users/grundy/tnbs/ status.html] (2014).

- 38.Hodgson R. G. Reflections upon 532 Herculina and its Satellite / Hodgson Richard G. // The Minor Planet Bulletin. – 1978. – Vol. 6. – P. 17-18.
- 39.Jinglang F. Modeling and analysis of periodic orbits around a contact binary asteroid / Jinglang Feng, Ron Noomen, Pieter N.A.M. Visser, Jianping Yuan // Astrophysics and Space Science. – 2015. – Vol. 357. – P. 124.
- 40.Kaasalainen M. Binary structures among large asteroids / Kaasalainen M., Torppa J., Piironen J. // Astronomy and Astrophysics. 2002. Vol. 383. P. L19-L22.
- 41.Kozai Y. Secular perturbations of asteroids with high inclination and eccentricity / Kozai Yoshihide // The Astronomical Journal. 1962. Vol. 67. P. 591.
- 42.Lawton A. T. Charon a companion to Pluto / Lawton A. T. // Spaceflight. 1978. Vol. 20. P. 428-429.
- 43.Lellouch E. Thermal properties of Pluto's and Charon's surfaces from Spitzer observations / E. Lellouch, J. Stansberry, J. Emery, W. Grundy, and D. P. Cruikshank // Icarus. – 2011. – Vol. 214. – P. 701-716.
- 44.Magnusson P. Asteroid Spin Vector Determinations version 4 / Magnusson P. // Small Bodies Node. – 1995.
- 45.Marchis F. Discovery of the triple asteroidal system 87 Sylvia / Marchis, F., P. Descamps, D. Hestroffer, and J. Berthier // Nature. 2005. Vol. 436. P. 822.
- 46.Marchis F. Satellites of (87) Sylvia / Marchis, F., P. Descamps, D. Hestroffer, andJ. Berthier // International Astronomical Union Circular. 2005. Vol. 8582.
- 47.Marchis F. S/2004 (45) 1 / Marchis, F., M. Baek, P. Descamps, J. Berthier, D. Hestroffer, and F. Vachier // International Astronomical Union Circular. 2007. Vol. 8817.
- 48.Marchis F. A dynamical solution of the triple asteroid system (45) Eugenia / F. Marchis, V. Lainey, P. Descamps, J. Berthier, M. Van Dam, I. de Pater, B. Macomber, M. Baek, D. Le Mignant, H.B. Hammel, M. Showalter, F. Vachier // Icarus. 2010. Vol. 210. P. 635-643.
- 49.Marsden B. G. Satellites of Saturn and Pluto / Marsden B. G. // International Astronomical Union Circular. 1986. Vol. 4157.

- 50.Martyusheva A. SOLAR RADIATION PRESSURE EFFECTS ON ASTEROID MOTIONS, INCLUDING NEAR-EARTH OBJECTS / Martyusheva, A., Petrov, N., Polyakhova, E.N. // Messenger of St. Petersburg University. – 2005. – Vol. 2. – Issue 60. – P. 135.
- 51.McMahon J. H. The Discovery of a Satellite of an Asteroid / McMahon James H.// The Minor Planet Bulletin. 1978. Vol. 6. P. 14-17.
- 52.Merline W. J. S/1998 (45) 1 / W. J. Merline, L. M. Close, C. Dumas, C. R. Chapman, F. Roddier, F. Menard, D. C. Slater, G. Duvert, C. Shelton, and T. Morgan // International Astronomical Union Circular. 1999. IAUC 7129.
- 53.Murray C.D. in: Solar System dynamics / Cart D. Murray, Stanley F. Dermot // Cambridge U Press. 2010.
- 54.Masiero J. R. Main belt asteroids with WISE/NEOWISE. I. Preliminary albedos and diameters / Joseph R. Masiero, A. K. Mainzer, T. Grav, J. M. Bauer, R. M. Cutri, J. Dailey, P. R. M. Eisenhardt, R. S. McMillan, T. B. Spahr, M. F. Skrutskie, D. Tholen, R. G. Walker, E. L. Wright, E. DeBaun, D. Elsbury, T. Gautier, S. Gomillion, and A. Wilkins // The Astrophysical Journal. – 2011. – Vol. 741. – P. 68-87.
- 55.Nolan M. C. Planetary radar imaging of binary asteroids, Binary Asteroid Dynamics Workshop / Michael C. Nolan, Ellen S. Howell, Lance A. M. Benner, Steven J. Ostro, Jon D. Giorgini, Chris Magri, Jean-Luc Margot, Michael Shepard // – 2008.
- 56.Nolan M. C. (153591) 2001 SN_263 / Nolan M. C., et al. // Central Bureau Electronic Telegrams. – 2008. – Vol. 1254.
- 57.Noll K. S. 2003 QW_111 / K. S. Noll, W. M. Grundy, D. C. Stephens, and H. F. Levison // International Astronomical Union Circular. 2006. Vol. 8745.
- 58.Ostro S. J. Radar imaging of binary near-Earth asteroid (66391) 1999 KW4 / Steven J. Ostro, Jean-Luc Margot, Lance A. M. Benner, Jon D. Giorgini, Daniel J. Scheeres, Eugene G. Fahnestock, Stephen B. Broschart, Julie Bellerose, Michael C. Nolan, Christopher Magri, Petr Pravec, Petr Scheirich, Randy Rose,
Raymond F. Jurgens, Eric M. De Jong, Shigeru Suzuki // Science. – 2006. – Vol. 314. – P. 1276-1280.

- 59.Polishook D. Spin Axes and Shape Models of Asteroid Pairs: Fingerprints of YORP and a Path to the Density of Rubble Piles / Polishook David // Icarus. – 2014. – Vol. 241. – P. 79-96.
- 60.Rabinowitz D. L. Photometric observations constraining the size, shape, and albedo of 2003 EL61, a rapidly rotating, Pluto-sized object in the Kuiper Belt / D. L. Rabinowitz , K. Barkume, M. E. Brown, H. Roe, M. Schwartz, S. Tourtellotte, and C. Trujillo // The Astronomical Journal. 2006. . Vol. 639. P. 1238-1251.
- 61.Ragozzine D. Orbits and masses of the satellites of the dwarf planet Haumea (2003 EL61) / D. Ragozzine and M. E. Brown // The Astronomical Journal. 2009. Vol. 137. P. 4766-4776.
- 62.Savanevich V. The program of automated detection of faint celestial bodies CoLiTec / Savanevich V., Bryukhovetskiy A., Kozhuhov A., Dickov E., Vlasenko V. // Space Science and Technology. – 2012. – Vol. 18. – Issue 1. – P. 39.
- 63.Seefelder W. in: Lunar Transfer Orbits Utilizing Solar Perturbations and Ballistic Capture, Herbert Utz Verlag, Issenschaft Munchen. 2012.
- 64.Showalter M. R. New satellite of (134340) Pluto: S/2011 (134340) 1 / M. R. Showalter, D. P. Hamilton, S. A. Stern, H. A. Weaver, A. J. Steffl, and L. A. Young // Central Bureau Electronic Telegrams. 2011. Vol. 2769.
- 65.Showalter M. R. New satellite of (134340) Pluto: S/2012 (134340) 1 / M. R. Showalter, H. A. Weaver, S. A. Stern, A. J. Steffl, M. W. Buie, W. J. Merline, M. J. Mutchler, R. Soummer, and H. B. Throop // International Astronomical Union Circular. 2012. Vol. 9253.
- 66.Showalter M. R. Resonant interactions and chaotic rotation of Pluto's small moons / M. R. Showalter & D. P. Hamilton // Nature. 2015. Vol. 522. . P. 45-49.
- 67.Smith J. C. 1978 P 1 / J. C. Smith // International Astronomical Union Circular. 1978. Vol. 3241.

- 68.Steffl A.J. A search for Vulcanoids with the STEREO Heliospheric Imager / A.J.
 Steffl, N.J. Cunningham, A.B. Shinn, D.D. Durda, S.A. Stern // Icarus. 2013. –
 Vol. 223. Issue 1. P. 48-56.
- 69.S15c: Stern S. A. The Pluto system: Initial results from its exploration by New Horizons / S. A. Stern, F. Bagenal, K. Ennico, G. R. Gladstone, W. M. Grundy, W. B. McKinnon, J. M. Moore // Science. 2015. Vol. 350. Issue 6258.
- 70.Talbert T. Last of Pluto's Moons Mysterious Kerberos Revealed by New Horizons / Talbert T. // NASA. [сайт] URL: [https://www.nasa.gov/feature /last-of-pluto-s-moons-mysterious-kerberos-revealed-by-new-horizons] (2015).
- 71.Taylor P. A. Tidal end states of binary asteroid systems with a nonspherical component / Taylor Patrick A.,Margot Jean-Luc // Icarus. – 2014. – Vol. 229. – P. 418-422.
- 72.Troianskyi V.V. Method for calculating orbits of near-Earth asteroids observed with telescope OMT-800 / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov, S.O. Korzhavin // Odessa Astronomical Publications. 2014. Vol. 27(2). P. 154-155.
- 73.Troianskyi V.V. Determination of the small Solar system bodies orbital elements from astrometric observations with OMT-800 telescope / V.V. Troianskyi, O.A. Bazyey, V.I. Kashuba, V.V. Zhukov // Third Gaia Fun SSO "Gaia Follow-up Network for Solar System Objects". Paris: IMCCE. 2015. Vol. 3. P. 127-130.
- 74.Troianskyi V.V. The impact of the non-sphericity of the gravitational field of the asteroid on the evolution of the orbits of its satellites / V.V. Troianskyi // Odessa Astronomical Publications. 2015. Vol. 28. Issue 2. P. 299-303.
- 75.Troianskyi V.V. Disintegration's condition of binary and multiple asteroids under the action of tidal forces Major Solar system planets / Troianskyi V.V., Radchenko K.O., Bazyey O.A. // Astronomical School's Report. – 2015. – Vol. 11(2). – P. 145-156.
- 76.Troianskyi V.V. Resonances in the asteroids systems / V.V. Troianskyi // Odessa Astronomical Publications. 2016. Vol. 29. P. 221-223.

- 77.Troianskyi V.V. The Solar-radiation pressure effects on the orbital evolution of asteroid moons / V.V. Troianskyi, O.A. Bazyey // Odessa Astronomical Publications. 2015. Vol. 28. Issue 1. P. 76-77.
- 78.Troianskyi V.V. Dynamics of the asteroid rings (10199) Chariklo / Troianskyi V.V., Bazyey O.A. // Astronomical School's Report. 2016. Vol. 12(2). P. 122-124.
- 79.Väisälä Y. Eine einfache Methode der Bahnbestimmung / Väisälä Y. // Ann. Acad. Scientiarum Fennicae, Ser. A, t. LII. – 1940. – Vol. 2. – P. 5.
- 80.Veillet C. Astrometry and Photometry of the binary TNO 1998 WW31 / Veillet Christian // HST Proposal. 2000. Cycle 9. ID #9259.
- 81.Veverka J. Dactyl: Galileo observations of Ida's satellite / J. Veverka, P.C. Thomas, P. Helfenstein, P. Lee, A. Harch, S. Calvo, C. Chapman, M.J.S. Belton, K. Klaasen, T.V. Johnson, M. Davies // Icarus. 1996. Vol. 120. Issue 1. P. 200.
- 82.Walsh K. J. Rotational breakup as the origin of small binary asteroids / Walsh K.
 J. // Nature. 2008. Vol.454. Issue 7201. P. 188.
- 83.Warner B. D. The Asteroid Lightcurve Data Base (LCDB) / Warner B. D., A. W. Harris and P. Pravec // [сайт] – URL: [http://www.minorplanet.info/ lightcurvedatabase.html] (2014).
- 84.Weidenschilling S. J. Hektor Nature and origin of a binary asteroid / Weidenschilling S. J. // Icarus. 1980. Vol. 44. P. 807-809.
- 85.Winter O. / Winter O., Araujo R., Sfair R. // IAU General Assembly. 2015. Vol. 29. – P. 2251028.
- 86.Yu Jiang Dynamical configurations of celestial systems comprised of multiple irregular bodies / Yu Jiang, Yun Zhang, Hexi Baoyin, Junfeng Li // Astrophys Space Sci. – 2016. – Vol. 361. – Article 306.
- 87.BINARY AND TERNARY NEAR-EARTH ASTEROIDS DETECTED BY RADAR [Електронний pecypc] - URL: https://echo.jpl.nasa.gov/~lance/ binary.neas.html (01.05.2017).

- 88.IAU International Astronomical Union [сайт] URL: https://www.iau.org/news/ pressreleases/detail/iau0603/ (01.05.2017).
- 89.NASA [сайт] URL: https://www.nasa.gov/ (01.05.2017).
- 90. IAU International Astronomical Union [сайт] URL: https://www.iau.org/ (01.05.2017).
- 91. IAU Minor Planet Center [сайт] URL: www.minorplanetcenter.net (01.05.2017).
- 92. IAU Minor Planet Center [сайт] URL: http://www.minorplanetcenter.net/ iau/ECS/MPCArchive/MPCArchive_TBL.html (01.05.2017).
- 93.University of Turku [сайт] URL: http://www.astro.utu.fi/TAS/TuorlaObs/ isoheikkila/index.eng.html (01.05.2017).
- 94.Turun yliopisto University of Turku [сайт] URL: http://www.utu.fi/fi/Sivut/ home.aspx (01.05.2017).
- 95.The Pan-STARRS1 data archive home page [сайт] URL: http://panstarrs.stsci.edu/ (01.05.2017).
- 96.NASA Jet Propulsion Laboratory [сайт] URL: https://www.jpl.nasa.gov/ (01.05.2017).
- 97. Johnston's Archive [Електронний ресурс] URL: http://www.johnstonsarchive.net/astro/astmoons/am-10199.html (01.05.2017).
- 98.Canada-France-Hawaii Telescope [сайт] URL: http://www.cfht.hawaii.edu/ (01.05.2017).
- 99.The Very Large Telescope Interferometer [сайт] URL: http://www.eso.org/sci/facilities/paranal/telescopes/vlti.html (01.05.2017).
- 100. Goldstone Deep Space Communications Complex NASA [сайт] URL: http://www.gdscc.nasa.gov/ (01.05.2017).
- 101. W. M. Keck Observatory [сайт] URL: http://www.keckobservatory.org/ (01.05.2017).
- 102. New Horizons NASA's Mission to Pluto [сайт] URL: http://pluto.jhuapl.edu/Multimedia/Images/index.php (01.05.2017).

- 103. Planetary Fact Sheet Metric [Електронний ресурс] URL: https://nssdc.gsfc.nasa.gov/planetary/factsheet/ (01.05.2017).
- 104. Asteroid Lightcurve Photometry Database (ALCDEF) [Електронний pecypc] URL: http://alcdef.org/ (01.05.2017).
- 105.Johnston'sArchive[Електроннийpecypc]-URL:http://www.johnstonsarchive.net/(01.05.2017).

Додаток А.

Розподіл подвійних і кратних тіл по групам та сімействам. Наведено деякі Кеплерові елементи орбіти [96],

що характеризують приналежність до групи або сімейства

Астероїди які	<i>a</i> (a.o.)	е	q (a.o.)	Q (a.o.)	Група,
(1862) Apollo	1 47004342241	0 559959378	0.646878822	2 2932080224	Apollo
(1866) Sisyphus	1.893818726	0.538293967	0.874387531	2.913249921	Apollo
(3671) Dionysus and	1.833500481	0.772242011	0.417594382	3.249406580	Amor
S/1997 (3671) 1	1100000101	0.,,,0.11	0111/02/1002	0.217100000	11
(5143) Heracles	1.833500481	0.772242011	0.417594382	3.249406580	Apollo
(5381) Sekhmet	0.947461319	0.29623718	0.66678805	1.228134584	Aten
(5646) 1990 TR	2.142140459	0.437049083	1.20591994	3.078360981	Amor
(7088) Ishtar	1.980767174	0.390732639	1.20681679	2.754717558	Amor
(7888) 1993 UC	2.436119943	0.664200014	0.818049043	4.054190842	Apollo
(31345) 1998 PG	2.014955130	0.391553520	1.225992357	2.803917903	Amor
(35107) 1991 VH and	1.137290734	0.144253548	0.973232511	1.301348958	Apollo
S/2008 (35107) 1					
(53110) 1999 AR7	1.644494591	0.214430826	1.291864257	1.9971249248	Amor
(65803) Didymos	1.644364375	0.383635122	1.013528448	2.275200302	Amor
(66063) 1998 RO1	0.990918301	0.720119477	0.277338733	1.704497870	Aten
(66391) 1999 KW4	0.642291859	0.688460238	0.200099453	1.084484265	Aten
(69230) Hermes	1.655109415	0.624135010	0.622097684	2.688121147	Apollo
(85938) 1999 DJ4	1.853094926	0.483304518	0.957485776	2.748704076	Apollo
(88710) 2001 SL9	1.061357590	0.270037573	0.774751163	1.347964018	Apollo
(136617) 1994 CC	1.637780212	0.417226647	0.954454666	2.321105759	Apollo
(136993) 1998 ST49	2.310275758	0.593080131	0.940097109	3.680454407	Apollo
(137170) 1999 HF1	0.819109010	0.462429639	0.440328726	1.197889295	Aten
(138095) 2000 DK79	1.776509203	0.414352113	1.040408861	2.512609544	Aten
(153591) 2001 SN263	1.986951527	0.478406719	1.036380566	2.937522489	Amor
(153958) 2002 AM31	1.703044974	0.451675264	0.933821686	2.472268263	Apollo
(162000) 1990 OS	1.678430687	0.462390415	0.902340425	2.454520949	Apollo
(162483) 2000 PJ5	0.872675342	0.37362454	0.54662242	1.198728267	Aten
(163693) Atira	0.7410827428	0.32216064	0.502335056	0.97983043	Atira
(164121) 2003 YT1	1.109909552	0.291915233	0.785910047	1.433909056	Apollo
(175706) 1996 FG3	1.05411509537	0.349930304	0.685248279	1.42298191144	Apollo
(185851) 2000 DP107 and	1.365489387	0.376719239	0.851083264	1.879895510	Apollo
S/2000 (2000 DP107) 1					
(190208) 2006 AQ	2.054002524	0.486860008	1.0539907	3.054014348	Amor
(226514) 2003 UX4	1.0951021658	0.615858212	0.420674504	1.7695298273	Apollo
(276049) 2002 CE26	2.234038734	0.559245640	0.984662312	3.483415156	Apollo
(285263) 1998 QE2	2.423106551	0.571515197	1.038264332	3.807948769	Amor
(311066) 2004 DC	1.633837569	0.399466431	0.981174307	2.286500832	Apollo
(348400) 2005 JF21	2.2230135522	0.53621043	1.031010499	3.415016605	Amor
(357439) 2004 BL86	1.5022021268	0.403073161	0.896704767	2.107699486	Apollo
(363027) 1998 ST27	0.819381537	0.530011092	0.385100234	1.253662841	Aten
(363067) 2000 CO101	1.076352695	0.090022725	0.979456493	1.173248898	Apollo
(363599) 2004 FG11	1.587694842	0.72425854	0.43779329	2.737596389	Apollo
(374851) 2006 VV2	2.386467443	0.605429626	0.941629351	3.83130554	Apollo
(385186) 1994 AW1	1.104781278	0.075460167	1.021414298	1.188148259	Amor
(399307) 1991 RJ2	2.2083582416	0.428903368	1.26118595	3.1555305285	Amor
(399774) 2005 NB7	2.044466396	0.517082099	0.987309420	3.101623372	Apollo

(410777) 2009 FD	1.1631569199	0.492921576	0.589811778	1.7365020618	Apollo
(450894) 2008 BT18	2.222999067	0.593195991	0.904324933	3.541673202	Apollo
(452561) 2005 AB	3.21736237	0.655379534	1.108768919	5.32595582	Amor
(461852) 2006 GY2	1.857632792	0.496099857	0.936061429	2.779204155	Apollo
(481532) 2007 LE	1.838829142	0.516738856	0.888634674	2.789023610	Apollo
1994 CJ1	1.4904278855	0.325346541	1.005522329	1.975333442	Apollo
1994 XD	2.347124733	0.733373708	0.625805165	4.068444300	Apollo
2000 UG11	1.928364818	0.572821161	0.823756645	3.032972991	Apollo
2002 BM26	1.832461461	0.444462980	1.018000178	2.646922743	Amor
2002 KK8	1.953258318	0.466308688	1.042436995	2.864079642	Amor
2003 \$\$84	1.930486345	0.570693888	0.82876959	3.032203103	Apollo
2005 Y096	0 743746462	0 33325777	0.49588717	0.99160575	Aten
2007 DT103	2.2058489	0.57557287	0.93622211	3.4754756	Apollo
2008 DG17	1.837644959	0.44947160	1.01167574	2.663614175	Amor
2013 WT44	2,25956237	0 56835774	0.975322610	3 54380214	Anollo
2014 WZ120	2.2136843	0.63862784	0.79996387	3.6274047	Apollo
2014 YB35	1 8747478	0.4829239	0.9693873	2 780108	Apollo
2015 TD144	1 988	0.7582	0.48086	3 496	Apollo
Марс-кроссери	<i>a</i> (a e)	ρ	<i>a</i> (a e)	0 (a e)	Група
mape-spoecepn.	<i>u</i> (<i>a.c.</i>)	c	<i>q</i> (a.c.)	Q (a.c.)	сімейство:
(1139) Atami	1 947630389	0 255501191	1 45000850	2 445252273	envener bo.
(1727) Mette	1 854222431	0.101729224	1.66559382	2.042851040	Hungaria
(1/27) Witt	2 380343808	0.343768410	1.56205680	3 198630814	mangana
(2011) Witt (2449) Kenos	1 909047502	0.168238351	1.587872499	2 2302225049	
(2577) Litva S/2012 (2577)	1 904439611	0.137937478	1.64174601	2.2502225015	Hungaria
1 and second satellite	1.901139011	0.157557170	1.01171001	2.10/13520)	mangana
(3873) Roddy	1.892048452	0.133696579	1.63908805	2.145008858	
(5261) Eureka	1.52353322	0.064859679	1.424717344	1.6223490956	Mars Trojan
(5407) 1992 AX	1.838397297	0.277565693	1.32812128	2.348673318	interio integrati
(7369) Gavrilin	2.370459627	0.318396091	1.61571455	3.125204706	
(8373) Stephengould	3.280218619	0.554698714	1.46068557	5.099751669	Hungaria
(12008) Kandrup	1.996504957	0.31620832	1.36519348	2.627816435	1100080000
(15700) 1987 OD	2.208448699	0.315943606	1.51070345	2.906193944	
(16635) 1993 QQ	2.2983160948	0.284235277	1.64505358	2.951578606	
(26074) Carlwirtz	1.811005685	0.088958120	1.64990202	1.972109346	Hungaria
(26471) Tracybecker	1.917977412	0.154476722	1.62169455	2.214260275	Hungaria
(32039) 2000 JO23	2.222813496	0.282754209	1.59430362	2.851323368	
(34706) 2001 OP83	2.253209814	0.383273282	1.38961469	3.116804935	
(51356) 2000 RY76	1.811797578	0.11163368	1.60953994	2.014055215	Hungaria
(53432) 1999 UT55	1.871650083	0.11587349	1.65477546	2.088524707	Hungaria
(99913) 1997 CZ5	2.293957933	0.397212393	1.38276941	3.205146452	1100.800.00
(114319) 2002 XD58	2.256121969	0.27521764	1.63519740	2.877046538	
(218144) 2002 RL66	2.305224311	0.34082360	1.51954947	3.090899156	
Головний пояс	<i>a</i> (a.o.)	e	q (a.o.)	O (a.o.)	Група,
астероїдів:		-	1 (2 ()	сімейство:
(22) Kalliope and Linus	2.910478163	0.099848778	2.61987048	3.201085850	
(41) Daphne and S/2008	2.760712646	0.275135943	2.001141370	3.520283922	
(41) 1					
(45) Eugenia, Petit-Prince	2.720342369	0.083185113	2.49405038	2.946634357	
and S/2004 (45) 1					
(87) Sylvia, Romulus and	3.481808398	0.091145156	3.16445843	3.799158367	
Remus					
(90) Antiope and S/2000	3.154487052	0.163458400	2.63885965	3.670114457	
(90) 1					
(93) Minerva, Aegis and	2.754124319	0.141224590	2.36517424	3.143074397	
Gorgoneion					
(107) Camilla and S/2001	3.487326707	0.066773541	3.25446556	3.720187859	
(107) 1					
(121) Hermione <i>and</i> S/2002	3.450115270	0.134268194	2.98687453	3.913356016	
(121) 1					
(120) Elalating $C/2002 (120)$	2 102028606	0 209452964	2 47218747	3 77/280787	1

1 and S/2014 (130) 1					
(216) Kleopatra, Alexhelios	2.796815213	0.249175002	2.099918776	3.493711650	-
and Cleoselene					
(243) Ida and Dactyl	2.862471602	0.041485093	2.74372170	2.981221504	-
(283) Emma and S/2003	3.047100676	0.148445205	2.59477319	3.499428161	
(283) 1					
(317) Roxane and S/2009	2.286745014	0.085547846	2.09111890	2.482371126	
(317) 1					
(379) Huenna and S/2003	3.136858904	0.186373517	2.55223148	3.721486330	-
(379) 1					
(702) Alauda and Pichi	3.191997731	0.020054628	3.12798341	3.256012057	
unem					
(762) Pulcova	3.156222142	0.102891933	2.83147234	3.480971941	-
(809) Lundia	2.282385746	0.193127550	1.84159418	2.723177314	-
(854) Frostia	2.368511967	0.173568755	1.95741230	2.779611639	
(939) Isberga	2.2467449376	0.177463926	1.848028761	2.6454611141	
(1052) Belgica	2.235833262	0.143528228	1.91492808	2.556738448	-
(1089) Tama	2 213775091	0.127502720	1 931512745	2.00037438	
(1313) Berna	2.655728252	0.208458632	2 10211877	3 209337729	
(1313) Derna (1333) Cevenola	2.033720232	0.134022850	2.10211077	2 984902276	
(1338) Duponta	2.052155910	0.112/32/10	2.27930930	2.504502270	
(1453) Fennia	1 896996724	0.028285674	1 84333889/	1 95065/1555	Hungaria
(1455) Feiling	1.890990724	0.020205074	1.845358894	1.930034333	Hungaria
(1509) Esclangona unu S/2003 (1500) 1	1.000343033	0.032213671	1.00021990	1.9204/1010	mungaria
(1717) Arlon	2 105047504	0 128076235	1 012722542	2 470172646	-
(1/1/) Alloli (1820) Degreen	2.193947394	0.128970233	2.06617922	2.479172040	
(1850) Pogson	2.188391430	0.033932424	2.00017823	2.511004074	
(2000) Pololiskaya	2.323903449	0.195574097	1.87432233	2.775266500	
(2047) Smetana	1.872013138	0.003427071	1.80559051	1.8/8429803	
(2121) Sevastopol	2.183210944	0.1/8/1089/	1.79304736	2.5/33/4530	11 .
(2131) Mayali	1.88/2/4522	0.111037884	1.6///1555	2.096833491	Hungaria
(2242) Balaton	2.20/99/4/64	0.11/43/9/7	1.94869472	2.46/300233	
(2343) Siding Spring	2.3344250913	0.255503133	1./3/9/21/	2.9308/8016	
(24/8) Tokai	2.225290189	0.068326263	2.0/3244426	2.377335952	
(2486) Metsahovi	2.268086843	0.080224861	2.08612989	2.450043795	
(2535) Hameenlinna	2.239903232	0.079991841	2.06072925	2.4190772143	
(2623) Zech	2.254/86313	0.234039084	1.72707819	2.7824944368	
(2691) Sersic	2.7824944368	0.112147656	1.99261085	2.495997791	
(2754) Efimov	2.228642262	0.232298177	1.71093273	2.746351797	
(2815) Soma	2.232596959	0.169407399	1.85437852	2.610815403	
(2825) Crosby	2.245836727	0.173473099	1.85624447	2.6354289833	
(3034) Climenhaga	2.325534157	0.209447286	1.83845734	2.812610974	
(3073) Kursk	2.242451547	0.136546023	1.93625371	2.548649389	
(3169) Ostro	1.891834941	0.066894323	1.76528192	2.018387960	Hungaria
(3309) Brorfelde	1.817472098	0.053273893	1.72064828	1.914295912	Hungaria
(3433) Fehrenbach	2.393726861	0.186430957	1.94746207	2.83999165	
(3673) Levy	2.345440167	0.184083409	1.91368354	2.777196790	
(3703) Volkonskaya	2.331384004	0.134376452	2.01810089	2.644667116	
(3749) Balam, S/2002	2.236702937	0.109273190	1.99229127	2.481114602	
(3749) 1 and third					
component					
(3782) Celle	2.416557896	0.093487405	2.19064017	2.642475621	
(3792) Preston	2.2918070306	0.220478796	1.78651218	2.797101884	
(3841) Dicicco	2.273965163	0.159655797	1.91091344	2.637016883	
(3868) Mendoza	2.333797095	0.098212416	2.10458924	2.563004946	
(3905) Doppler	2.559763440	0.257997455	1.89935099	3.220175893	
(3951) Zichichi	2.339662074	0.173971564	1.93262740	2.746696744	
(3982) Kastel	2.258729314	0.219375851	1.76321865	2.754239980	
(4029) Bridges	2.525421064	0.130959059	2.19469430	2.856147829	
(4272) Entsuji	2.3680705319	0.249963265	1.77613989	2.960001175	
(4296) Van Woerkom	2.2487558164	0.165864138	1.87576787	2.6217437606	1
(4383) Suruga	2.424516768	0.063722790	2.27001980	2.579013741	

(4440) Tohentohas	1 021202145	0.077206165	1 77205747	2.060628910	Uunaaria
(4440) Tellalitelles	1.921293143	0.077200103	1.77293747	2.009020019	пипдини
(4492) Debussy	2.703983837	0.160536404	2.20/11324	3.204832434	
(4514) Vilen	2.344/0995/	0.152080/07	1.980/5401	2.702785302	
(4541) Mizuno	2.3/9/19/2	0.02019258	2.33172583	2.427833611	
(4607) Seilandfarm	2.263885788	0.019025892	2.22081334	2.306958234	
(4666) Dietz	2.340531439	0.233340874	1.79438979	2.886673091	
(4674) Pauling and S/2004	1.858686166	0.070367676	1.72789474	1.989477592	Hungaria
(4674) 1					
(4765) Wasserburg	1.945408318	0.060073422	1.82854098	2.062275652	Hungaria
(4786) Tatianina	2.358201605	0.193657533	1.90151810	2.814885110	
(4868) Knushevia	1.960501539	0.068090629	1.82677757	2.094225512	
(4951) Iwamoto	2.256428848	0.166530009	1.88066573	2.632191963	
(5112) Kusaji	2.174806534	0.130096161	1.89187255	2.457740516	
(5425) Vojtech	2.454054108	0.13464616	2.12362515	2.78448307	
(5426) Sharp	1.9551570863	0.116771007	1.72685143	2.1834627473	
(5474) Gingasen	2.382913175	0.067449239	2.22218750	2.543638855	
(5477) Holmes	1.917452812	0.075236158	1.77319103	2.061714594	Hungaria
(5481) Kiuchi	2.339257265	0.063265229	2.19126362	2.487250910	0
(5536) Honevcutt	2.2491770064	0.094363496	2.0369368	2.461417212	
(5674) Wolff	2.3573702944	0.166350317	1.965221	2.749519589	
(5872) Sugano	2.249125073	0.133546107	1 94876318	2 549486971	
(5899) Jedicke	1 928720407	0.116660149	1.70371560	2.515100571	Hungaria
(5005) Johnson	1.920720407	0.071722727	1.70371300	2.133723217	Hungaria
(5905) JOHISON	1.910207075	0.0/1/35/2/	1.77516150	2.047255990	пипдини
(6016) 1991 PATT	2.332394332	0.213219421	1.85041779	2.8545709152	
(6084) Bascom	2.312/42949	0.23548/303	1./6812135	2.857364548	
(6186) Zenon	2.3791444008	0.184198265	1.94091013	2.81/3/86/1	
(6244) Okamoto	2.159377811	0.152704068	1.82963204	2.489123587	
(6265) 1985 TW3	2.165872171	0.193058849	1.74773138	2.584012959	
(6369) 1983 UC	2.293215745	0.142830617	1.96567432	2.620757165	
(6615) Plutarchos	2.169992956	0.126321037	1.89587719	2.444108717	
(6708) Bobbievaile	2.444865529	0.181908230	2.00012437	2.889606691	
(7187) Isobe	1.937433295	0.086375239	1.77008703	2.104779560	
(7225) Huntress	2.340644707	0.203256012	1.86489460	2.816394817	
(7958) Leakey	1.877005940	0.077056381	1.73237065	2.021641225	Hungaria
(8026) Johnmckay	1.925339521	0.07492829	1.78107713	2.069601917	Hungaria
(8116) Jeanperrin	2.249749165	0.158303423	1.89360617	2.605892159	
(8306) Shoko	2.242117427	0.219825063	1.74924382	2.734991031	
(8474) Rettig	2.2243996779	0.171476073	1.84296836	2.6058309986	
(9069) Hoyland	1.913197745	0.11820467	1.68704883	2.139346661	Hungaria
(9260) Edwardolson	2.289345475	0.230276951	1.76216198	2.816528971	
(9617) Grahamchapman	2 224704823	0 113042943	1 973217643	2 476192003	
(9783) Tensho-kan	2.221701023	0.104091294	2 39234417	2.1/01/2005	
(10123) Fideoia	2.070200001	0.206295996	1 80116031	2.740255755	
(10208) Germanicus	2.207307847	0.2002/3//0	1.00110031	2.737437303	
(10208) Germanicus	2.233408893	0.201491830	1.70499227	2.083823322	
(11217) 1999 JC4	1.943872983	0.009081447	1.00042110	2.079324800	
(11264) Claudiomaccone	2.577566405	0.233759053	1.97503692	3.180095887	
(12326) Shirasaki	2.2630859193	0.18/820509	1.83803197	2.6881398678	
(13123) Tyson	2.360486365	0.270703491	1.72149447	2.999478265	
(15268) Wendelinefroger	2.365111709	0.235088725	1.80910061	2.921122805	
(15430) 1998 UR31	2.222085701	0.170166932	1.84396019	2.600211209	
(15822) 1994 TV15	1.948072364	0.079700666	1.79280970	2.103335028	
(16525) Shumarinaiko	2.399529197	0.138775564	2.06653318	2.732525214	
(17246) Christophedumas	2.838968952	0.021176578	2.77884931	2.899088599	
and S/2004 (17246) 1					
(17260) Kusnirak	2.204534248	0.183286451	1.80047299	2.608595506	
(18890) 2000 EV26	1.9170260852	0.073965409	1.77523247	2.0588197042	
(20325) Julianoey	2.378629142	0.076478504	2.19671514	2.560543142	
(21436) Chaovichi	2.186466611	0.085062306	2.00048072	2.372452503	
(22899) Alconrad and	2.844299130	0.081280706	2.61311249	3.075485771	1
S/2003 (22899) 1					
	1	1	1		

(24465) 2000 SX155	1 9253595763	0.085087494	1 76153555	2 0891835978	
(24403) 2000 SA133	1.9233393703	0.085087494	1.70155555	2.0891855978	
(20410) 1999 AW04	1.91/9//412	0.134470722	1.02109433	2.214200273	II
(27508) 2000 P16	1.903505051	0.027560328	1.90939021	2.01/019894	Hungaria
(31450) 1999 CU9	2.393174608	0.26/5194/	1.7529538	3.03339541	
(32008) Adriangalad	2.192129962	0.192345615	1.77048338	2.613776547	
(43008) 1999 UD31	2.348350145	0.18885934	1.90484229	2.791858003	
(44620) 1999 RS43	2.176320153	0.164202154	1.8189637	2.53367661	
(46829) McMahon	2.401611438	0.179730048	1.9699697	2.833253177	
(52316) Daveslater	1.896824832	0.06513823	1.77326902	2.020380643	
(69406) 1995 SX48	1.843932099	0.022388577	1.80264908	1.885215115	
(76818) 2000 RG79	1.929916718	0.095761448	1.745105099	2.114728337	
(79472) Chiorny	1.962122802	0.08009309	1.80497032	2.119275289	Hungaria
(80218) 1999 VO123	2.218387762	0.027163402	2.1581288	2.278646719	Ŭ
Троянські астероїли	a (a.o.)	е	a (a.o.)	<i>O</i> (a.o.)	Група.
Юпітера:	(-	4 (1101)	£ (mot)	сімейство:
(617) Patroclus <i>and</i>	5.217303510	0.139513679	4,48941830	5.945188718	L5
Menoetius	5.217505510	0.159515079	1.10911050	0.0 10 100 / 10	20
(624) Hektor and \$/2006	5 2/19788662	0.024404703	3 377908197	5 12166913	I.A.
(624) 1	5.247700002	0.024404703	5.577900197	5.12100715	L
(024) 1 (17365) 1078 VE11	5 26758081	0.07804338	1 85174847	5 683/311/	15
(17303) 1378 VI11 (20214) Eugedomos	5.20738381	0.07894338	4.03174047	5.66229510	
(29314) Euryuallas	3.27991384	0.072009390	4.89034248	3.00328319	LJ
1 ранснептунові об'єкти:	<i>a</i> (a.o.)	e	q (a.o.)	<i>Q</i> (a.o.)	і рупа,
(124240) DL (20 4450 (072	0.0500.4071.0	20.57200177	40.21(147(0	сімейство:
(134340) Pluto, Charon,	39.44506973	0.250248/13	29.57399177	49.31614/68	Plutino
Nix, Hydra, Kerberos and					
Styx			1.0.0.0.11		~
(10199) Chariklo and ring	15.754190	0.1715941	13.050864	18.457515	Centaur
system					
(26308) 1998 SM165 and	47.675	0.369454	30.0614	65.289	1:2
S/2001 (26308) 1					resonance
(38628) Huya	39.4127	0.276051	28.53278	50.2927	Plutino
(42355) Typhon and	38.10752321	0.540154039	17.52359062	58.6914558	Centaur
Echidna					
(47171) 1999 TC36, S/2001	39.4715	0.225902	30.55480	48.3882	Plutino
(47171) 1 and third					
component					
(48639) 1995 TL8	52.560	0.23597	40.1573	64.962	SDO,
					extended
(50000) Quaoar and	43.2191	0.035127	41.7009	44.7372	Cubewano
Weywot					
(55637) 2002 UX25	42.7846	0.144846	36.5874	48.9818	Cubewano
(58534) Logos and Zoe	45.443	0.12372	39.8212	51.065	Cubewano
(60458) 2000 CM114	59 923	0 40693	35 539	84 308	SDO
(60621) 2000 FF8	55 580	0.40571	33 0304	78 129	2.5
	22.200	0.100/1	55.0501	, 0.12)	resonance
(65489) Ceto and Phoreus	101 903	0 825449	17 78733	186.019	Centaur
(66652) Borosisi and Doby	101.005	0.023449	30.0254	100.019	Cubowara
(70360) Silo Nunom	43.010	0.00402	13 1000	41.301	Cubewano
(7500) SIIa-INUIIAIII (20206) 2000 CM (105	1 44 1 1/9	1 0 01 1940	1 4.7.4272	1 44 A M /	Cubewano
(80800) 2000 CM105	42.4022	0.015910	20.569	45 0200	Cub
	42.4032	0.06685	39.568	45.2380	Cubewano
(82075) 2000 Y W134	42.4032 58.340	0.06685 0.29405	39.568 41.1853	45.2380 75.495	Cubewano 3:8
(82075) 2000 Y W 134	42.4032 58.340	0.06685 0.29405	39.568 41.1853	45.2380 75.495	Cubewano 3:8 resonance
(82075) 2000 Y W 134 (82157) 2001 FM185	42.4032 58.340 38.718	0.06685 0.29405 0.05811	39.568 41.1853 36.468	45.2380 75.495 40.968	Cubewano 3:8 resonance Cubewano
(82075) 2000 Y W 134 (82157) 2001 FM185 (88611) Teharonhiawako	42.4032 58.340 38.718 43.894	0.06685 0.29405 0.05811 0.029879	39.568 41.1853 36.468 42.583	45.2380 75.495 40.968 45.206	Cubewano 3:8 resonance Cubewano Cubewano
(82075) 2000 Y W 134 (82157) 2001 FM185 (88611) Teharonhiawako and Sawiskera	42.4032 58.340 38.718 43.894	0.06685 0.29405 0.05811 0.029879	39.568 41.1853 36.468 42.583	45.2380 75.495 40.968 45.206	Cubewano 3:8 resonance Cubewano Cubewano
(82075) 2000 Y W134 (82157) 2001 FM185 (88611) Teharonhiawako <i>and</i> Sawiskera (90482) Orcus <i>and</i> Vanth	42.4032 58.340 38.718 43.894 39.4386	0.06685 0.29405 0.05811 0.029879 0.219161	39.568 41.1853 36.468 42.583 30.7952	45.2380 75.495 40.968 45.206 48.0820	Cubewano 3:8 resonance Cubewano Cubewano Plutino
(82073) 2000 Y W134 (82157) 2001 FM185 (88611) Teharonhiawako <i>and</i> Sawiskera (90482) Orcus <i>and</i> Vanth (119067) 2001 KP76	42.4032 58.340 38.718 43.894 39.4386 43.422	0.06685 0.29405 0.05811 0.029879 0.219161 0.18742	39.568 41.1853 36.468 42.583 30.7952 35.284	45.2380 75.495 40.968 45.206 48.0820 51.559	Cubewano 3:8 resonance Cubewano Cubewano Plutino 4:7
(82073) 2000 Y W134 (82157) 2001 FM185 (88611) Teharonhiawako <i>and</i> Sawiskera (90482) Orcus <i>and</i> Vanth (119067) 2001 KP76	41.1325 42.4032 58.340 38.718 43.894 39.4386 43.422	0.06685 0.29405 0.05811 0.029879 0.219161 0.18742	39.568 41.1853 36.468 42.583 30.7952 35.284	45.2380 75.495 40.968 45.206 48.0820 51.559	Cubewano 3:8 resonance Cubewano Cubewano Plutino 4:7 resonance
(82073) 2000 Y W134 (82157) 2001 FM185 (88611) Teharonhiawako <i>and</i> Sawiskera (90482) Orcus <i>and</i> Vanth (119067) 2001 KP76 (119979) 2002 WC19	42.4032 58.340 38.718 43.894 39.4386 43.422 48.18208731	0.06685 0.29405 0.05811 0.029879 0.219161 0.18742 0.265488923	39.568 41.1853 36.468 42.583 30.7952 35.284 35.39027683	45.2380 75.495 40.968 45.206 48.0820 51.559 60.9738978	Cubewano 3:8 resonance Cubewano Cubewano Plutino 4:7 resonance 1:2
(82073) 2000 Y W134 (82157) 2001 FM185 (88611) Teharonhiawako and Sawiskera (90482) Orcus and Vanth (119067) 2001 KP76 (119979) 2002 WC19	41.1325 42.4032 58.340 38.718 43.894 39.4386 43.422 48.18208731	0.06685 0.29405 0.05811 0.029879 0.219161 0.18742 0.265488923	39.568 41.1853 36.468 42.583 30.7952 35.284 35.39027683	45.2380 75.495 40.968 45.206 48.0820 51.559 60.9738978	Cubewano 3:8 resonance Cubewano Cubewano Plutino 4:7 resonance 1:2 resonance
(82075) 2000 Y W134 (82157) 2001 FM185 (88611) Teharonhiawako and Sawiskera (90482) Orcus and Vanth (119067) 2001 KP76 (119979) 2002 WC19 (120347) Salacia and	42.4032 58.340 38.718 43.894 39.4386 43.422 48.18208731 41.9621	0.06685 0.29405 0.05811 0.029879 0.219161 0.18742 0.265488923 0.106288	39.568 41.1853 36.468 42.583 30.7952 35.284 35.39027683 37.5020	45.2380 75.495 40.968 45.206 48.0820 51.559 60.9738978 46.4221	Cubewano 3:8 resonance Cubewano Cubewano Plutino 4:7 resonance 1:2 resonance Cubewano

(123509) 2000 WK183	44.619	0.04977	42.3979	46.839	Cubewano
(134860) 2000 OJ67	42.71279935	0.019547985	41.87785018	43.54774852	Cubewano
(136108) Haumea, Hi'iaka	43.1660	0.192457	34.8584	51.4736	SDO.
and Namaka					Haumea
					class
(136199) Eris and	67.8363	0.439647	38.0123	97.6603	SDO.
Dysnomia				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	scattered
y					disk
(136472) Makemake and	45.7615	0.154015	38.7136	52.8095	Cubewano
S/2015 (136472) 1					
(139775) 2001 OG298	39.3003	0.19179	31.76273	46.8378	Plutino
(148780) Altiira	44.4009	0.05814	41.819	46.9826	Cubewano
(160091) 2000 OL67	44.992	0.10726	40.166	49.818	Cubewano
(160256) 2002 PD149	42.903	0.06433	40.143	45.662	Cubewano
(174567) Varda <i>and</i> Ilmare	45.63423503	0.141676948	39.1689159	52.09955415	Cubewano
(182933) 2002 GZ31	50.378	0.23863	38.3564	62.399	SDO.
(102/00) 2002 0201		0.20000	000000	021077	extended
(208996) 2003 AZ84	39 6805	0 174435	32,7588	46 6022	Plutino
(225088) 2007 OR10	66.9901	0.506639	33.0503	100.9299	3:10
	0000000	0.000000	0010000	1000	resonance
(229762) 2007 UK126	74.158	0.49374	37.5437	110.773	SDO
(275809) 2001 OY297	43 6820	0.08216	40.0931	47 2709	Cubewano
(303712) 2005 PR21	44 045	0.10138	39 5799	48 510	Cubewano
(341520) Mors-Somnus	39 32345656	0.266606565	28 83956489	49 80734823	Plutino
(364171) 2006 IZ81	44 72253068	0.08117341	41 09225037	48 352811	Cubewano
(385446) Manwe and	43.635	0.115/1	38 500	48.552011	<u><i>A</i></u> .7
Thorondor	+5.055	0.11341	30.377	40.071	resonance
(469420) 2001 XP254	42 564	0 22369	33 0426	52 085	3.5
(+0)+20) 2001 M 234	42.304	0.22507	55.0420	52.005	5.5 resonance
(469505) 2003 FE128	17 9/19	0.25251	35.8/12	60.057	1.2
(40)303) 2003 1 2120	+7.5+5	0.23231	55.0412	00.057	resonance
(469514) 2003 0A91	44 257	0.07039	41 142	47 372	Cubewano
(469705) 2005 FF298	44.26724779	0.093682629	40 11564404	48.40885154	Cubewano
1998 WV24	39.123	0.03730	37 6634	40 582	Cubewano
1998 WW31 and \$/2000	44 81574668	0.082111381	41 13586383	48.49562952	Cubewano
(1998 WW31) 1	44.01374000	0.002111301	41.15500505	40.47502752	Cubewano
1999 014	37 9154	0.02647	36.9116	38 9192	Cubewano
1999 BT21/	42 413	0.0/39/	40 5493	14 276	Cubewano
1999 RV214	45 224	0.1803/	37.068/	53 380	Cubewano
1999 XY1/3	43.224	0.07770	39.866	46 582	Cubewano
2000 CE105	43.224	0.04217	12 2683	40.502	Cubewano
2000 CO114	46 32297272	0.114538018	41 01723123	51 6287142	Cubewano
2000 OL 251	47.695	0.21434	37 4717	57.918	1.2
2000 QL231	+7.055	0.21434	57.4717	57.910	resonance
2000 WT169	45 1211	0.00928	44 702	45 5397	Cubewano
2001 FL 185	44 326	0.07955	40.8000	47 852	Cubewano
2001 0C298	46 191	0.12164	40.5721	51 809	Cubewano
2001 QC270	40.171	0.05360	40.5721	46.284	Cubewano
2001 QQ322	43.930	0.0264	41.575	45.003	Cubewano
2001 R71/3	44 125	0.0204	41 2/89	47 000	Cubewano
2001 XP254	44.125	0.00317	41.2409	47.000	Cubewano
2001 AR234 2002 VE130	46 024	0.020730000	40.627	51 /21	Cubewano
2002 VT130	40.024	0.11/5	40.027	/3 881	Cubewano
2002 ¥ 1130 2002 ¥H01	42.023	0.02332	41.304	45.001	Cubewano
2002 A1171	44.102	0.00309	40.470	+7.000	Cubewano
2003 FU3/ 2003 OP01	43.077	0.03179	42.200	43.003	Cubewano
2003 QK91 2003 QV00	40.370	0.17902	38.043	J4./00	Cubewano
2003 Q 1 90	42.0203	0.000450109	40.20/	44.7033	Cubewaho
2003 1338 2002 UNI294	44.0494031/	0.090430198	40.01085/04	40.00/95209	Cubewano
2003 UN284	42.79318508	0.000/3//13	42.50485688	45.08151529	Cubewano
2003 W U188	44.410	0.02529	42.332	40.208	Cubewano
2003 131/9	43.803	0.02328	42.734	44.972	Cubewano

2003 YU179	47.111	0.16533	39.3217	54.900	Cubewano
2004 KH19	40.761	0.11906	35.908	45.614	
2004 PB108	45.025	0.10982	40.080	49.970	Cubewano
2005 EO304	45.734	0.0684	42.606	48.862	Cubewano
2005 GD187	43.253	0.01475	42.615	43.891	Cubewano
2005 VZ122	41.497	0.18241	33.927	49.067	5:8
					resonance
2006 BR284	44.0983	0.04558	42.0884	46.1081	Cubewano
2006 CH69	46.04485471	0.042015228	44.11026965	47.97943976	Cubewano
2006 SF369	62.893	0.3779	39.128	86.658	SDO, 1:3
					resonance
[hst5]	42.9	?	?	?	

Додаток В.

Критична планетоцентрична відстань подвійних

			ткра	i mna av	терощи					
Астероїдна	M ₄	d	RManevniji	RBauana	Raming	RManc	RIONITAN	RCaryou	Rynau	RHentyn
система	(кг)	(км)	(км)	венера (км)	(км)	(км)	(км)	сатурн (км)	(км)	(км)
	8.1×10 ¹⁸	1095	47477	116420	124635	59252	850559	569019	304172	321398
(22) Kalliope	$\pm 2 \times 10^{17}$	±11	±90	±221	±237	±113	±1616	±1081	±578	±610
	6.31×10^{18}	112	20875	51188	54800	26052	373978	250189	133740	141314
(41) Daphne	$\pm 1.1 \times 10^{17}$	443	±122	±299	±320	±152	±2186	±1463	±782	±826
(45) Eugenia,	5.63×10^{18}	1164.42	56995	139759	149622	71131	1021078	683095	365152	385831
(beta)	$\pm 3 \times 10^{14}$	±0.03	±3	± 6	±6	±3	±42	±28	±15	±16
(45) Eugenia,	5.63×10^{18}	610.59	29886	73286	78458	37299	535425	358196	191476	202319
(gamma)	$\pm 3 \times 10^{14}$	±0.06	±3	± 8	±9	±4	±61	±41	±22	±23
(87) Sylvia (hata)	1.48×10^{19}	1351.35	47926	117522	125816	59814	858616	574409	307054	324443
(87) Sylvia, (beta)	$\pm 6 \times 10^{16}$	±0.01	±63	±154	±165	±79	±1128	±755	±404	±426
(87) Sylvia,	1.48×10^{19}	701.64	24884	61019	65325	31056	445806	298241	159427	168455
(gamma)	$\pm 6 \times 10^{16}$	±0.02	±32	±79	±84	±40	±576	±386	±206	±218
(90) Antione	8.28×10^{17}	171	15857	38883	41627	19790	284078	190047	101590	107344
()) Antiope	$\pm 2.2 \times 10^{16}$	± 1	±49	±120	±128	±61	±876	±586	±313	±331
(93) Minerva,	3.35×10^{18}	623.5	36284	88974	95252	45284	650040	434873	232464	245629
(beta)	$\pm 5.4 \times 10^{17}$	±10	±1571	±3853	±4125	±1961	±28148	±18831	±10066	±10636
(93) Minerva,	3.35×10^{18}	375	21823	53513	57289	27236	390962	261551	139814	147732
(gamma)	$\pm 5.4 \times 10^{17}$	±16	±329	±806	±863	±410	±5891	±3941	±2107	±2226
(107) Comillo	1.12×10^{19}	1250	48648	119292	127710	60714	871544	583058	311677	329328
(107) Califina	$\pm 3 \times 10^{17}$	±10	±48	±118	±126	± 60	±859	±574	±307	±325
(121) Harmiana	4.7×10^{18}	747	38831	95220	101940	48463	695675	465402	248784	262873
(121) Hermone	$\pm 2 \times 10^{17}$	±11	±30	±72	±78	±37	±529	±354	±189	±200
(130) Elektra,	6.6×10^{18}	1318	61183	150029	160616	76358	1096106	733288	391984	414182
(beta)	$\pm 4 \times 10^{17}$	±25	±101	±249	±266	±127	±1817	±1216	±650	±687
(130) Elektra,	6.6×10 ¹⁸	460	21354	52362	56057	26650	382556	255928	136808	144555
(gamma)	$\pm 4 \times 10^{17}$	400	±449	±1101	±1179	±560	±8043	±5381	±2876	±3039
(216) Kleopatra,	4.64×10^{18}	678	35396	86795	92921	44175	634126	424226	226773	239615
(beta)	$\pm 2 \times 10^{16}$	±13	±630	±1544	±1653	±786	±11283	±7549	±4035	±4263
(216) Kleopatra,	4.64×10^{18}	454	23702	58120	62221	29580	424621	284069	151851	160450
(gamma)	$\pm 2 \times 10^{10}$	±6	± 280	± 687	±736	±350	± 5022	± 3360	±1796	± 1898
(243) Ida	4.2×10^{10}	108	27054	66341	71022	33764	484685	324251	173330	183146
(210) Iuu	$\pm 6 \times 10^{13}$	100	±1425	±3496	±3742	±1779	± 25539	± 17085	±9133	±9650
(283) Emma	1.38×10^{10}	581	45441	111427	119290	56711	814083	544616	291128	307615
(100) Linna	$\pm 3 \times 10^{10}$	±3.6	±49	±120	±129	±61	±878	±587	±314	±332
(317) Roxane	7.2809×10 ¹⁶	257	53592	131415	140689	66884	960115	642311	343351	362796
(017) 1000000			±2	±4	±5	±2	±32	±21	±11	±12
(379) Huenna	3.83×10^{17}	3336	399994	980844	1050060	499205	7166027	4794027	2562675	2707804
(07)) Писниц	$\pm 1.9 \times 10^{10}$	±54.9	±132	±327	± 350	±166	±2389	±1598	±854	±905
(617) Patroclus	1.36×10^{10}	680	53443	131050	140298	66698	957447	640526	342397	361787
($\pm 1.1 \times 10^{17}$	±20	±166	±406	±435	±207	±2968	±1986	±1061	±1121
(624) Hektor	7.91×10^{18}	957.5	41845	102609	109850	52223	749662	501519	268090	283272
	$\pm 1.41 \times 10^{18}$	±55.3	±248	±609	±652	±310	± 4450	±2977	±1591	±1682
(702) Alauda	6.06×10^{18}	1227	41845	102609	109850	52223	749662	501519	268090	283272
(, va) mauua	$\pm 3.6 \times 10^{17}$	±24	±248	±609	±652	±310	±4450	±2977	±1592	±1682

і кратних астероїдних систем

(762) Pulcova	1.4×10^{18}	703	54719	134179	143648	68291	980313	655823	350574	370428
(($\pm 1 \times 10^{17}$ 4 86×10 ¹⁴	±14	± 250 17499	±612 42909	± 656 45937	±312 21839	±44'/4	±2993	± 1600 112110	1±691 118459
(809) Lundia	$\pm 3.12 \times 10^{14}$	15.8	±7144	±17518	± 18754	±8916	±127986	±85622	± 45770	±48362
(854) Frostia	1.65×10^{14}	17	26989	66180	70850	33683	483511	323466	172910	182703
(00 1) 110500	$\pm 9.02 \times 10^{12}$	22	±510	± 1250	± 1338	±636	±9130	± 6108	± 3265	± 3450
(939) Isberga	$\pm 1.74 \times 10^{15}$	±4.5	± 1411	± 3460	± 3704	± 1761	± 25276	± 16910	±9039	±9551
(1052) Belgica	7.86×10 ¹⁴	34	32077	78658	84208	40033	574672	384452	205511	217149
(1052) Deigica	$\pm 1.93 \times 10^{13}$	20.7	±265	±651	±697	±331	±4754	±3180	± 1700	±1797
(1089) Tama	$\pm 3.9 \times 10^{14}$	20.7 ±1.3	$\frac{18/38}{\pm 1635}$	$45949 \\ \pm 4008$	± 49192 ± 4291	23386 ± 2040	335706 ± 29284	224585 ± 19591	± 120053 ± 10472	± 126852 ± 11066
(1130) Atomi	3.991×10 ¹⁴	15	17740	43501	46571	22140	317821	212620	113657	120094
(1159) Ataini		15	±1	±1	±2	±1	±11	±7	±4	±4
(1313) Berna	1.14×10^{13} +5.17×10 ¹³	25	20838 +324	51099 +795	54705 +851	26007 + 405	373328	249754 +3885	133507 + 2077	141068 + 2105
	3.80×10^{14}		16837	41286	44200	21013	301638	201794	107870	113979
(1338) Duponta	$\pm 8.89 \times 10^{12}$	14	±133	±326	±349	±166	±2384	±1595	±852	±901
(1453) Fennia	2.85×10^{14}	15	19845	48662	52096	24767	355525	237844	127141	134341
(1500)	$\pm 4./5 \times 10^{10}$ 3.98×10 ¹⁴		± 1243 165753	± 3048 406452	± 3263 435135	±1551 206866	± 22271 2969530	±14899 1986597	$\pm /964$ 1061947	± 8415 1122087
Esclangona	$\pm 8.64 \times 10^{13}$	140	±14094	± 34562	± 37001	± 17590	± 252507	± 168925	±90300	±95415
(1717) Arlon	6.38×10^{14}	17	17193	42159	45135	21457	308016	206061	110151	116389
	$\pm 3.56 \times 10^{13}$	1,	±332	±813	±871	±414	±5942	±3975	±2125	±2246
(1727) Mette	8.84×10	21	19054	46724 +2	50021 +2	23/80	341364 +11	228370	+4	128990
(1930) Deggen	4.12×10 ¹⁴	19	21068	51663	55309	26294	377448	252510	134981	142625
(1830) Pogson	$\pm 1.72 \times 10^{13}$	10	±301	±739	±791	±376	±5398	±3611	±1930	±2040
(1862) Apollo	3.35×10^{12}	3.75	21823	53513	57289	27236	390962	261551	139814	147732
(2006)	$\pm 3.5 \times 10$ 7 71×10 ¹³	±0.25	± 300 17387	$\pm /49$ 42635	± 802 45643	±381 21699	±3472 311489	± 3001 208384	±1957 111393	± 2068 117701
Polonskaya	$\pm 8.18 \times 10^{12}$	8.5	±662	± 1622	±1737	±826	± 11852	±7929	±4239	±4479
(2014) Wirt	2.31×10^{14}	12	17022	41740	44686	21244	304955	204013	109056	115232
(2044) WIIT	$\pm 6.10 \times 10^{13}$	12	±1828	±4482	±4799	±2281	±32749	±21909	±11711	±12375
(2047) Smetana	2.28×10^{13} +3 40×10 ¹²	6.3	19349 +1068	47447 +2620	50795 + 2805	24148 + 1333	346644 + 19142	231903 +12806	123965 +6846	130985 + 7233
(2121) Summer and a set	5.37×10^{14}	26	27860	68316	73137	34770	499117	333906	178492	188600
(2121) Sevastopol	$\pm 7.47 \times 10^{12}$	20	±129	±318	±340	±162	±2321	±1553	±830	±877
(2131) Mayall	4.76×10^{14} +1.21×10 ¹³	18	20079	49235	52710	25059 +215	359714 + 2081	240646 +2061	128639 +1102	135924
	4.45×10^{14}	21	23947	58722	62866	29887	429020	287012	153424	162112
(2478) Tokai	$\pm 3.30 \times 10^{12}$	21	±59	±144	±154	±73	±1050	±703	±376	±397
(2577) Litva,	5.36×10^{13}	21	48492	118909	127301	60519	868749	581188	310677	328271
(beta)	$\pm 8.04 \times 10^{11}$		±243	±597	±639	± 304	± 4358	±2916	±1559	±1647
(2577) Litva, (gamma)	$\pm 8.04 \times 10^{11}$	378	± 4376	± 10737	± 11495	± 5465	± 78449	± 52481	± 28054	± 29648
(2601) Sancia	1.05×10 ¹⁴	12	22158	54334	58168	27653	396960	265564	141959	149998
(2091) Sersic	$\pm 6.91 \times 10^{12}$	12	±509	±1247	±1335	±635	±9112	±6096	±3259	±3443
(2754) Efimov	2.26×10^{14} +3.15×10 ¹²	10	14298	$35061 \\ +163$	37535 + 175	17844	256156 + 1102	171367	91605 +426	96793 +451
	2.81×10^{14}	10	17275	42360	45349	±05 21559	309479	207040	110674	116942
(2815) Soma	$\pm 1.09 \times 10^{13}$	13	±229	±561	±601	±286	±4102	±2744	±1467	±1550
(3034)	8.30×10 ¹⁴	19	17603	43164	46210	21969	315358	210973	112777	119163
Climenhaga	2.51×10^{14}		±1 30375	±1 74483	±2 79740	±1 37000	±11 544175	±/ 364050	±4	±4 205626
(3073) Kursk	$\pm 2.25 \times 10^{12}$	22	±90	±221	±237	±113	± 1618	±1083	±579	±612
(3169) Ostro	1.86×10^{14}	5.2	7932	19451	20823	9900	142108	95069	50820	53698
(3107) (310	$\pm 6.2 \times 10^{13}$	5.2	±1148	±2814	±3013	±1432	±20560	±13754	±7352	±7769
(3309) Brorfelde	9.74×10^{13} +4.70×10 ¹²	9	17030	41761 +706	44708 +756	21255 +350	305107 +5158	204115 + 3451	109111 + 1845	115290 +1949
		3.4	21872	53633	57418	27297	391844	262141	140129	148065
(3671) Dionysus	2.48×10 ¹²	±0.6	±1036	±2541	±2720	±1293	±18566	±12420	±6639	±7015
(3673) Levv	1.97×10^{14}	13	19450	47695	51060	24274	348456	233115	124613	131670
(3703)	$\pm 1.44 \times 10^{13}$		±496	±1216	± 1301	±619	±8881	±5942	±3176	± 3356
(3703) Volkonskava	$\pm 3.01 \times 10^{12}$	7.8	± 636	± 1560	± 1671	±794	± 11401	249558 ±7627	±4077	± 4308
(3749) Balam,	5.1×10^{14}	289	314969	772350	826854	393091	5642780	3774985	2017940	2132219
(beta)	$\pm 2 \times 10^{13}$	±13	±10141	± 24866	± 26620	±12655	±181666	±121534	± 64967	± 68644

(3749) Balam,	5.1×10^{14}	20	21797	53450	57222	27204	390504	261245	139650	147558
(gamma)	$\pm 2 \times 10^{13}$ 2×10^{14}	18	± 292 26801	$\pm /16$ 65721	± 766 70359	± 364 33449	± 5229 480155	± 3498 321220	$\pm 18'/0$ 171710	$\pm 19'/6$ 181435
(3782) Celle	$\pm 2.15 \times 10^{13}$	± 1	±544	±1333	±1427	±678	±9739	±6516	±3483	± 3680
(3841) Dicicco	1.83×10^{14}	12	18412	45149	48336	22979	329861	220675	117963	124643
	6 38×10 ¹⁴		20233	49615	±2 53116	25252	362487	242501	± 4 129630	136972
(3868) Mendoza	$\pm 1.05 \times 10^{13}$	20	±111	±273	±292	±139	±1995	±1335	±713	±754
(3873) Roddy	3.20×10^{14}	14	17817	43690	46773	22236	319198	213542	114150	120614
	$\pm 3.17 \times 10^{13}$ 2.07×10 ¹⁴		±629	±1544	± 1653 100551	±/86 47803	±11279	±7545 459064	±4033	±4262
(3905) Doppler	2.07~10	26	±1	±3	±3	±2	±23	±15	±8	±8
(3951) Zichichi	2.18×10^{14}	16	23142	56747	60751	28881	414590	277358	148263	156660
	$\pm 2.03 \times 10^{14}$		±//2 15393	± 1892 37747	± 2020 40411	± 903 19211	± 13823 275778	± 9248 184494	± 4943 98622	± 3223 104207
(4029) Bridges	±1.07×10 ¹³	13	±140	±344	±368	±175	±2510	±1679	±898	±949
(4383) Suruga	2.13×10^{14}	11	16048	39352	42129	20028	287506	192340	102816	108639
(4440)	$\pm 9.06 \times 10^{12}$ 8.67×10 ¹²		± 234	±5/4 30502	±615 42200	± 292	±4196	±2807	±1501 103208	±1586
Tchantches	$\pm 6.06 \times 10^{12}$	3.8	±7931	±19448	± 20820	± 9898	±142086	± 95054	± 50812	± 53690
(4492) Debussy	1.49×10^{15}	31	23633	57951	62041	29494	423389	283245	151410	159985
(11)2) Debussy	$\pm 1.80 \times 10^{14}$	51	± 1034	±2537	±2716	±1291	±18535	± 12400	± 6628	± 7004
(4514) Vilen	1.89×10	11	16684	40911	43798 +1	20822	298897	199960 +7	106890	+4
(4607)	3.00×10 ¹⁴	10	24711	60595	64871	30840	442708	296169	158319	167285
Seilandfarm	$\pm 1.52 \times 10^{13}$	19	±431	±1057	±1132	±538	±7725	±5168	±2762	±2919
(4674) Pauling	7.44×10^{13}	250	517692	1269456	1359040	646096	9274625	6204666	3316740	3504573
(4765)	$\pm 2.50 \times 10$ 5.59×10 ¹²		± 3910 14231	± 14511 34897	±15555 37360	$\pm /380$ 17761	± 106020 254960	± 70926 170567	±3/914 91177	±40064 96341
Wasserburg	$\pm 3.83 \times 10^{12}$	2.9	± 6695	±16417	±17576	±8356	±119943	±80241	±42893	±45323
(4786) Tatianina	2.83×10^{13}	6.6	18860	46248	49511	23538	337884	226042	120832	127675
(4700) Tutiumiu	$\pm 5.22 \times 10^{12}$	0.0	±1326	±3251	± 3480	± 1654	± 23749	± 15888	±8493	±8974
(4868) Knushevia	$\pm 1.89 \times 10^{12}$	2.1	± 3923	± 9619	± 10298	± 4896	± 70275	± 47014	± 25131	± 26555
(1051) Imamata	7.09×10 ¹³	21	65224	159939	171226	81402	1168514	781729	417878	441543
(4951) Iwainoto	$\pm 9.69 \times 10^{11}$	51	±297	±730	±781	±372	±5333	±3568	±1907	±2016
(5143) Heracles	5.21×10^{13} +4.05×10 ¹³	4	9325 +6069	22865 + 14883	24479 +15034	11637 + 7575	167054 +108737	111758 + 72744	59741 +38886	63124 + 41088
	$\pm 4.03 \times 10^{12}$		±0009	± 14883 39959	± 13934 42779	± 7373 20337	291941	± 12744 195307	± 38880 104402	± 41088 110315
(5261) Eureka	$\pm 7.12 \times 10^{10}$	2.1	±283	±693	±742	±353	±5064	±3388	±1811	±1914
(5381) Sekhmet	1.07×10^{12}	1.54	13111	32149	34418	16362	234879	157133	83996	88753
	$\pm 1.56 \times 10^{13}$ 5.95 × 10 ¹³	±0.12	±397 12937	±9/3	±1041 33961	±495 16145	$\pm /10/$	±4/55 155050	±2542 82883	±2686 87577
(5407) 1992 AX	$\pm 3.91 \times 10^{13}$	5.8	±5536	±13576	± 14534	± 6909	±99184	± 66353	±35469	± 37478
(5426) Sharn	7.63×10^{12}	45	19904	48807	52251	24840	356580	238550	127518	134740
(3420) Sharp	$\pm 3.56 \times 10^{12}$	-1.5	±4647	±11395	±12199	± 5800	±83252	±55695	±29772	± 31458
(5477) Holmes	$\pm 2.16 \times 10^{10}$ $\pm 2.85 \times 10^{12}$	6.7	20938 ± 1007	51343 ± 2469	54966 ±2643	± 1257	$\frac{3}{5109}$ ± 18040	230946 ±12068	134144 ± 6451	± 6817
(5491) Vin shi	3.56×10^{14}	15	18424	45179	48367	22994	330078	220820	118041	124725
(5401) KIUCHI	$\pm 2.84 \times 10^{12}$	15	±49	±119	±128	±61	±872	±583	±312	±329
(5646) 1990 TR	1.79×10^{13} +0.32 × 10^{12}	5.1	16983 + 4724	41646 +11585	44585 +12402	21196 +5896	304264 + 84639	203551 + 56623	$108809 \\ +30268$	114971 + 31082
	1.39×10^{13}		15938	39082	41840	19891	285530	191018	102110	107892
(5899) Jedicke	$\pm 2.60 \times 10^{12}$	4.4	±1138	±2791	±2988	±1420	±20389	±13640	±7292	±7705
(5905) Johnson	7.39×10^{13}	9.3	19299	47324	50664	24086	345749	231304	123645	130647
	$\pm 3.48 \times 10^{12}$ 1.78×10 ¹⁴		±313 30958	±/6/ 75912	±821 81269	±390 38636	±3601	$\pm 3/4/$ 371034	± 2003 198338	± 2116 209570
(6084) Bascom	$\pm 1.88 \times 10^{13}$	20	± 1169	± 2867	± 3070	± 1459	±20949	± 14015	± 7492	± 7916
(6244) Okamoto	2.51×10^{14}	13	17949	44013	47119	22401	321558	215120	114994	121506
	$\pm 2.25 \times 10^{12}$ 9 34×10 ¹³		±53	±131 37655	± 140 40312	±67	±956	± 640	±342	±361 103054
(6265) 1985 TW3	$\pm 5.82 \times 10^{12}$	8	±332	±815	±872	±415	± 5953	±3982	±2129	± 2250
(6615) Plutarches	2.59×10 ¹³	9.7	28529	69958	74895	35606	511114	341932	182782	193133
	$\pm 9.91 \times 10^{11}$	7.1	±372	±912	±976	±464	±6662	±4457	±2382	±2517
(6708) Bobbievaile	4.32×10^{17} +3.23×10 ¹²	19	21883	53659 +133	57446 +142	2/310	392033 +969	262267 +649	140197 +347	148136 +366
	2.25×10^{12}	2.0	18606	45626	48846	23221	333341	223003	119208	125959
(7088) Ishtar		2.8	±1	±2	±2	±1	±11	±7	±4	±4

(7225) Huntress	2.35×10^{14}	10	14108	34594	37035	17607	252742	169083	90384	95503
	$\pm 2.3 \times 10^{14}$		±507 33076	± 1243 81107	± 1331 86831	± 633 41280	±9085 592568	$\pm 60/8$ 396424	± 3249 211911	± 3433 223912
(7369) Gavrilin	5.55 10	27	±1	±3	±3	±1	±20	±13	±7	±7
(7958) Leakev	1.90×10^{13}	10	32650	80062	85712	40748	584932	391316	209180	221026
(1)00) Leaney	$\pm 3.20 \times 10^{12}$	10	± 2074	± 5085	± 5444	± 2588	±37153	± 24855	± 13286	± 14039
(8116) Jeannerrin	$+4.13 \times 10^{12}$	13	26499 +484	64980 + 1187	+1270	$\frac{33072}{+604}$	4/4/40 +8669	317598 +5800	169774 + 3100	+3276
	2.77×10^{13}	0.4	27049	66327	71008	33757	484583	324183	173294	183108
(8306) Shoko		9.4	±1	±2	±2	±1	±16	±11	±6	±6
(8373) Stophongould	1.24×10^{14}	15	26191	64225	68757	32688	469225	313909	167802	177305
Stephengould	7.63×10^{13}		±1 28737	± 2 70466	±2 75439	±1 35864	±10 514827	± 10 344416	±0 184110	±0 194536
(8474) Rettig	7.05*10	14	±1	±2	±3	±1	±17	±12	±6	±6
(9069) Hovland	2.26×10^{13}	7.8	24016	58890	63046	29972	430248	287833	153863	162577
(900) Hovianu	5 40 1013	7.0	±1	±2	±2	±1	±14	±10	±5	±5
(9260) Edwardalson	5.40×10^{13} +1.40 × 10^{13}	7.2	16582 + 1738	40663 +4261	43532 + 4562	20695	297081 +31133	198/45	106240 +11134	+112257 +11764
(9617)	3.71×10^{11}		33206	<u>+</u> 4201 81427	87173	41443	594903	397986	212746	224794
Grahamchapman	$\pm 1.81 \times 10^{11}$	5.2	± 2680	± 6571	± 7035	± 3344	± 48007	± 32116	± 17168	± 18140
(10208)	2.85×10^{13}	12	37061	90879	97293	46253	663963	444187	237443	250890
Germanicus	$\pm 4.72 \times 10^{12}$	15	±2307	± 5658	±6057	± 2880	±41338	±27655	±14783	±15621
(11217) 1999 JC4	3.01×10^{13}	6.2	17354	42554	45557	21658	310902	207992	111183	117480
(112(4)	4.02×10^{13}		±1	±1	±2 40022	±1	±10	±/	±4	±4
(11204) Claudiomaccone	4.02×10	6	+1	57594 +1	40033	+1	273202 +9	182770	97701 +3	+3
(15268)	4.71×10^{13}		20982	51450	55081	26186	375895	251471	134425	142038
Wendelinefroger		8.7	±1	±2	±2	±1	±13	±8	±4	±5
(15430) 1998	4.38×10 ¹³	82	20250	49657	53161	25273	362794	242707	129740	137088
UR31	$\pm 1.05 \times 10^{12}$	0.2	±164	±403	±432	±205	±2945	±1970	±1053	±1113
(15822) 1994 TV15	4.43×10^{12}	3.3	17501	42916	45944	21842	313543	209758	112127	118477
1 V 15	$\pm 2.18 \times 10$ 1.17 × 10 ¹⁴		± 4427	±10850	±11022 37886	±3323	$\pm /9311$	±33038	±28303	±29969 07606
Shumarinaiko	$\pm 1.01 \times 10^{13}$	8.1	± 442	± 1085	± 1161	± 552	± 7924	± 5301	± 2834	± 2994
(1((25) 1002 00	8.21×10 ¹³	10	24044	58959	63119	30007	430751	288170	154043	162766
(10055) 1995 QU	12	12	±1	±2	±2	±1	±14	±10	±5	±5
(17246) 2000	7.63×10^{13}	228	467997	1147597	1228582	584075	8384325	5609061	2998356	3168159
		220	. 1 7				+280	+188	1 1 / 1 / 1	
GL74 (17260) 2000	8 26×10 ¹³	220	±17	±39	±41	±19 19464	265044	177212	±100	±103
GL74 (17260) 2000 JO58	8.26×10^{13} ±1.61×10 ¹²	7.4	±17 14794 ±97	± 39 36278 ± 237	± 41 38838 ± 254	± 19 18464 ± 121	265044 ±1735	177312 ± 1160	94783 ± 620	± 103 100151 ± 656
GL74 (17260) 2000 JQ58 (17365) 1978	$\begin{array}{c} 8.26{\times}10^{13} \\ \pm 1.61{\times}10^{12} \\ 2.26{\times}10^{16} \end{array}$	7.4	± 17 14794 ± 97 13243	± 39 36278 ± 237 32474	± 41 38838 ± 254 34766	± 19 18464 ± 121 16528	265044 ± 1735 237256	$ \begin{array}{r} 177312 \\ \pm 1160 \\ 158723 \end{array} $	± 100 94783 ± 620 84846	± 103 100151 ± 656 89651
GL74 (17260) 2000 JQ58 (17365) 1978 VF11	$\begin{array}{r} 8.26{\times}10^{13} \\ \pm 1.61{\times}10^{12} \\ 2.26{\times}10^{16} \\ \pm 7.94{\times}10^{14} \end{array}$	7.4 43	± 17 14794 ± 97 13243 ± 158	$ \begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ \end{array} $	± 41 38838 ± 254 34766 ± 416	± 19 18464 ± 121 16528 ± 198	$ \begin{array}{r} \pm 230 \\ 265044 \\ \pm 1735 \\ 237256 \\ \pm 2839 \\ \end{array} $	$ \begin{array}{r} $	± 100 94783 ± 620 84846 ± 1015	± 103 100151 ± 656 89651 ± 1073
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000	$\begin{array}{r} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ 4.740\times10^{11}\\ \end{array}$	7.4 43 6	± 17 14794 ± 97 13243 ± 158 14357	± 39 36278 ± 237 32474 ± 389 35206 ± 102	± 41 38838 ± 254 34766 ± 416 37691 ± 106	± 19 18464 ± 121 16528 ± 198 17918 ± 02	$\begin{array}{r} \pm 280 \\ 265044 \\ \pm 1735 \\ 237256 \\ \pm 2839 \\ 257216 \\ \pm 1220 \end{array}$	$ \begin{array}{r} 177312 \\ \pm 1160 \\ 158723 \\ \pm 1899 \\ 172076 \\ 1925 \end{array} $	± 100 94783 ± 620 84846 ± 1015 91984	± 103 100151 ± 656 89651 ± 1073 97193
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22890) 1000	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \end{array}$	7.4 43 6	± 17 14794 ± 97 13243 ± 158 14357 ± 75 201283	± 39 36278 ± 237 32474 ± 389 35206 ± 183 720025	± 41 38838 ± 254 34766 ± 416 37691 ± 196 701188	± 19 18464 ± 121 16528 ± 198 17918 ± 93 276125	± 280 265044 ± 1735 237256 ± 2839 257216 ± 1338 5200378	$ \begin{array}{r} 177312 \\ \pm1160 \\ 158723 \\ \pm1899 \\ 172076 \\ \pm895 \\ 2612150 \\ \end{array} $	± 100 94783 ± 620 84846 ± 1015 91984 ± 478	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13} \end{array}$	7.4 43 6 182	± 17 14794 ± 97 13243 ± 158 14357 ± 75 301383 ± 29529	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522	± 19 18464 ± 121 16528 ± 198 17918 ± 93 376135 ± 36855	± 280 265044 ± 1735 237256 ± 2839 257216 ± 1338 5399378 ± 529042	$\begin{array}{r} 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074)	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \end{array}$	7.4 43 6 182	± 17 14794 ± 97 13243 ± 158 14357 ± 75 301383 ± 29529 15565	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860	± 19 18464 ± 121 16528 ± 198 17918 ± 93 376135 ± 36855 19425	± 280 265044 ± 1735 237256 ± 2839 257216 ± 1338 5399378 ± 529042 278848	$\begin{array}{r} -100\\ \hline 177312\\ \pm 1160\\ \hline 158723\\ \pm 1899\\ \hline 172076\\ \pm 895\\ \hline 3612150\\ \pm 353925\\ \hline 186547\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \end{array}$	7.4 43 6 182 6.1	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1	$\begin{array}{r} \pm 19 \\ \hline \pm 19 \\ \hline 18464 \\ \pm 121 \\ \hline 16528 \\ \pm 198 \\ \hline 17918 \\ \pm 93 \\ \hline 376135 \\ \pm 36855 \\ \hline 19425 \\ \pm 1 \\ \end{array}$	± 280 265044 ± 1735 237256 ± 2839 257216 ± 1338 5399378 ± 529042 278848 ± 9	$\begin{array}{r} -186\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 (2110) 2000 Carlwirtz	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \hline 6.87\times10^{18}\\ \pm1.0^{16}\\ \end{array}$	7.4 43 6 182 6.1 11377	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \end{array}$	± 39 36278 ± 237 32474 ± 389 35206 ± 183 739035 ± 72412 38167 ± 1 1277857	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033	$\begin{array}{r} \pm 19 \\ \pm 19 \\ 18464 \\ \pm 121 \\ 16528 \\ \pm 198 \\ 17918 \\ \pm 93 \\ 376135 \\ \pm 36855 \\ 19425 \\ \pm 1 \\ 650371 \\ 650371 \end{array}$	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \end{array}$	$\begin{array}{r} \pm 160\\ 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ 6245726\end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ 6.87\times10^{18}\\ \pm1.8\times10^{16}\\ 1.57\times10^{14}\\ \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 20070 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314	± 19 18464 ± 121 16528 ± 198 17918 ± 93 376135 ± 36855 19425 ± 1 650371 ± 90	± 280 265044 ± 1735 237256 ± 2839 257216 ± 1338 5399378 ± 529042 278848 ± 9 9336000 ± 1286 520707	$\begin{array}{r} -186\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 248410\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 106702
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \hline 6.87\times10^{18}\\ \pm1.8\times10^{16}\\ 1.57\times10^{14}\\ \pm3.34\times10^{13}\\ \end{array}$	$ \begin{array}{c} 223 \\ 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348	± 19 18464 ± 121 16528 ± 198 17918 ± 93 376135 ± 36855 19425 ± 1 650371 ± 90 36280 ± 3018	± 280 265044 ± 1735 237256 ± 2839 257216 ± 1338 5399378 ± 529042 278848 ± 9 9336000 ± 1286 520797 ± 43321	$\begin{array}{r} -100\\ 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ +28981\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \hline 6.87\times10^{18}\\ \pm1.8\times10^{16}\\ 1.57\times10^{14}\\ \pm3.34\times10^{13}\\ 5.86\times10^{12}\\ \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 2.1 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311	$\begin{array}{r} \pm 19 \\ \hline \pm 19 \\ \hline 18464 \\ \pm 121 \\ \hline 16528 \\ \pm 198 \\ \hline 17918 \\ \pm 93 \\ \hline 376135 \\ \pm 36855 \\ \hline 19425 \\ \pm 1 \\ \hline 650371 \\ \pm 90 \\ \hline 36280 \\ \pm 3018 \\ \hline 18689 \\ \hline \end{array}$	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \pm 1286\\ 520797\\ \pm 43321\\ 268275\\ \end{array}$	$\begin{array}{r} -188\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474 \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370 101372
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6	$\begin{array}{c} 8.26 \times 10^{13} \\ \pm 1.61 \times 10^{12} \\ 2.26 \times 10^{16} \\ \pm 7.94 \times 10^{14} \\ 4.82 \times 10^{13} \\ \pm 7.49 \times 10^{11} \\ 1.45 \times 10^{14} \\ \pm 3.56 \times 10^{13} \\ 3.97 \times 10^{13} \\ \hline 6.87 \times 10^{18} \\ \pm 1.8 \times 10^{16} \\ 1.57 \times 10^{14} \\ \pm 3.34 \times 10^{13} \\ 5.86 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \hline \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380	$\begin{array}{r} \pm 19 \\ \pm 19 \\ 18464 \\ \pm 121 \\ 16528 \\ \pm 198 \\ 17918 \\ \pm 93 \\ 376135 \\ \pm 36855 \\ 19425 \\ \pm 1 \\ 650371 \\ \pm 90 \\ 36280 \\ \pm 3018 \\ 18689 \\ \pm 6836 \end{array}$	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \pm 1286\\ 520797\\ \pm 43321\\ 268275\\ \pm 98133\\ \end{array}$	$\begin{array}{r} -186\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370 101372 ± 37081
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314)	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \hline 6.87\times10^{18}\\ \pm1.8\times10^{16}\\ 1.57\times10^{14}\\ \pm3.34\times10^{13}\\ 5.86\times10^{12}\\ \pm3.56\times10^{12}\\ \pm3.56\times10^{12}\\ 1.44\times10^{16}\\ \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ 41 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ 14674 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380 38523	± 19 18464 ± 121 16528 ± 198 17918 ± 93 376135 ± 36855 19425 ± 1 650371 ± 90 36280 ± 3018 18689 ± 6836 18314	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \pm 1286\\ 520797\\ \pm 43321\\ 268275\\ \pm 98133\\ 262895\\ \pm 98133\\ 262895\\ \end{array}$	$\begin{array}{r} -186\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094 94015	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370 101372 ± 37081 99339
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \hline 8.87\times10^{18}\\ \pm1.8\times10^{16}\\ 1.57\times10^{14}\\ \pm3.34\times10^{13}\\ 5.86\times10^{12}\\ \pm3.56\times10^{12}\\ \pm3.56\times10^{12}\\ \pm1.41\times10^{16}\\ \pm1.41\times10^{16}\\ \pm1.41\times10^{14}\\ \hline 7.01\times10^{11}\\ \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ 41 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 22649 \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380 38523 ± 125	± 19 18464 ± 121 16528 ± 198 17918 ± 93 376135 ± 36855 19425 ± 1 650371 ± 90 36280 ± 3018 18689 ± 6836 18314 ± 59 17125	± 280 265044 ± 1735 237256 ± 2839 257216 ± 1338 5399378 ± 529042 278848 ± 9 9336000 ± 1286 520797 ± 43321 268275 ± 98133 262895 ± 852 245929	$\begin{array}{r} -186\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164459\end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094 94015 ± 305	± 103 ± 103 ± 103 ± 103 ± 103 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370 101372 ± 37081 99339 ± 322
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \hline 6.87\times10^{18}\\ \pm1.8\times10^{16}\\ 1.57\times10^{14}\\ \pm3.34\times10^{13}\\ 5.86\times10^{12}\\ \pm3.56\times10^{12}\\ \pm3.56\times10^{12}\\ 1.44\times10^{16}\\ \pm1.41\times10^{14}\\ 7.01\times10^{11}\\ \pm4.14\times10^{11}\\ \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ 41 \\ 1.4 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380 38523 ± 125 36022 ± 12473	$\begin{array}{r} \pm 19 \\ \pm 19 \\ 18464 \\ \pm 121 \\ 16528 \\ \pm 198 \\ 17918 \\ \pm 93 \\ 376135 \\ \pm 36855 \\ 19425 \\ \pm 1 \\ 650371 \\ \pm 90 \\ 36280 \\ \pm 3018 \\ 18689 \\ \pm 6836 \\ 18314 \\ \pm 59 \\ 17125 \\ \pm 5930 \\ \end{array}$	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \pm 1286\\ 520797\\ \pm 43321\\ 268275\\ \pm 98133\\ 262895\\ \pm 852\\ 245828\\ \pm 85121\\ \end{array}$	$\begin{array}{r} -186\\ \hline -177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164458\\ \pm 56945\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094 94015 ± 305 87912 ± 30440	± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370 101372 ± 37081 99339 ± 322 92890 ± 32164
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG (32008) 2000	$\begin{array}{c} 8.26 \times 10^{13} \\ \pm 1.61 \times 10^{12} \\ 2.26 \times 10^{16} \\ \pm 7.94 \times 10^{14} \\ 4.82 \times 10^{13} \\ \pm 7.49 \times 10^{11} \\ 1.45 \times 10^{14} \\ \pm 3.56 \times 10^{13} \\ 3.97 \times 10^{13} \\ \hline 6.87 \times 10^{18} \\ \pm 1.8 \times 10^{16} \\ 1.57 \times 10^{14} \\ \pm 3.34 \times 10^{13} \\ \hline 5.86 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ 1.44 \times 10^{16} \\ \pm 1.41 \times 10^{11} \\ \pm 4.14 \times 10^{11} \\ \hline 6.34 \times 10^{13} \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ 41 \\ 1.4 \\ 12 \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ 28387 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ 69610 \\ \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380 38523 ± 125 36022 ± 12473 74522	$\begin{array}{r} \pm 19 \\ \pm 19 \\ \hline 18464 \\ \pm 121 \\ \hline 16528 \\ \pm 198 \\ \hline 17918 \\ \pm 93 \\ \hline 376135 \\ \pm 36855 \\ \hline 19425 \\ \pm 1 \\ \hline 650371 \\ \pm 90 \\ \hline 36280 \\ \pm 3018 \\ \hline 18689 \\ \pm 6836 \\ \hline 18314 \\ \pm 59 \\ \hline 17125 \\ \pm 5930 \\ \hline 35428 \\ \end{array}$	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \pm 1286\\ 520797\\ \pm 43321\\ 268275\\ \pm 98133\\ 262895\\ \pm 852\\ 245828\\ \pm 85121\\ 508568\\ \end{array}$	$\begin{array}{r} -186\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164458\\ \pm 56945\\ 340229\end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094 94015 ± 305 87912 ± 30440 181871	$\begin{array}{r} \pm 103 \\ \pm 103 \\ 100151 \\ \pm 656 \\ 89651 \\ \pm 1073 \\ 97193 \\ \pm 506 \\ 2040246 \\ \pm 199909 \\ 105367 \\ \pm 3 \\ 3527765 \\ \pm 489 \\ 196792 \\ \pm 16370 \\ 101372 \\ \pm 37081 \\ 99339 \\ \pm 322 \\ 92890 \\ \pm 32164 \\ 192171 \end{array}$
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG (32008) 2000 HM53	$\begin{array}{c} 8.26 \times 10^{13} \\ \pm 1.61 \times 10^{12} \\ 2.26 \times 10^{16} \\ \pm 7.94 \times 10^{14} \\ 4.82 \times 10^{13} \\ \pm 7.49 \times 10^{11} \\ 1.45 \times 10^{14} \\ \pm 3.56 \times 10^{13} \\ 3.97 \times 10^{13} \\ \hline 6.87 \times 10^{18} \\ \pm 1.8 \times 10^{16} \\ 1.57 \times 10^{14} \\ \pm 3.34 \times 10^{13} \\ 5.86 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 1.41 \times 10^{16} \\ \pm 1.41 \times 10^{11} \\ \pm 4.14 \times 10^{11} \\ 6.34 \times 10^{13} \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ 41 \\ 1.4 \\ 13 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ 28387 \\ \pm 1 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ 69610 \\ \pm 2 \\ \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380 38523 ± 125 36022 ± 12473 74522 ± 2	$\begin{array}{r} \pm 19 \\ \pm 19 \\ 18464 \\ \pm 121 \\ 16528 \\ \pm 198 \\ 17918 \\ \pm 93 \\ 376135 \\ \pm 36855 \\ 19425 \\ \pm 1 \\ 650371 \\ \pm 90 \\ 36280 \\ \pm 3018 \\ 18689 \\ \pm 6836 \\ 18314 \\ \pm 59 \\ 17125 \\ \pm 5930 \\ 35428 \\ \pm 1 \\ \end{array}$	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \pm 1286\\ 520797\\ \pm 43321\\ 268275\\ \pm 98133\\ 262895\\ \pm 852\\ 245828\\ \pm 85121\\ 508568\\ \pm 17\\ \end{array}$	$\begin{array}{r} -186\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164458\\ \pm 56945\\ 340229\\ \pm 11\\ \end{array}$	$\begin{array}{r} \pm 100 \\ 94783 \\ \pm 620 \\ 84846 \\ \pm 1015 \\ 91984 \\ \pm 478 \\ 1930896 \\ \pm 189193 \\ 99720 \\ \pm 3 \\ 3338689 \\ \pm 460 \\ 186245 \\ \pm 15492 \\ 95939 \\ \pm 35094 \\ 94015 \\ \pm 305 \\ 87912 \\ \pm 30440 \\ 181871 \\ \pm 6 \end{array}$	$\begin{array}{r} \pm 103 \\ \pm 103 \\ 100151 \\ \pm 656 \\ 89651 \\ \pm 1073 \\ 97193 \\ \pm 506 \\ 2040246 \\ \pm 199909 \\ 105367 \\ \pm 3 \\ 3527765 \\ \pm 489 \\ 196792 \\ \pm 16370 \\ 101372 \\ \pm 37081 \\ 99339 \\ \pm 322 \\ 92890 \\ \pm 32164 \\ 192171 \\ \pm 6 \end{array}$
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG (32008) 2000 HM53 (32039) 2000	$\begin{array}{c} 8.26 \times 10^{13} \\ \pm 1.61 \times 10^{12} \\ 2.26 \times 10^{16} \\ \pm 7.94 \times 10^{14} \\ 4.82 \times 10^{13} \\ \pm 7.49 \times 10^{11} \\ 1.45 \times 10^{14} \\ \pm 3.56 \times 10^{13} \\ 3.97 \times 10^{13} \\ \hline 6.87 \times 10^{18} \\ \pm 1.8 \times 10^{16} \\ 1.57 \times 10^{14} \\ \pm 3.34 \times 10^{13} \\ 5.86 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 1.41 \times 10^{16} \\ \pm 1.41 \times 10^{16} \\ \pm 1.41 \times 10^{11} \\ \pm 4.14 \times 10^{11} \\ 6.34 \times 10^{13} \\ \hline 5.20 \times 10^{13} \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ 41 \\ 1.4 \\ 13 \\ 53 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ 28387 \\ \pm 1 \\ 123624 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ 69610 \\ \pm 2 \\ 303143 \\ \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380 38523 ± 125 36022 ± 12473 74522 ± 2 324536	± 19 18464 ± 121 16528 ± 198 17918 ± 93 376135 ± 36855 19425 ± 1 650371 ± 90 36280 ± 3018 18689 ± 6836 18314 ± 59 17125 ± 5930 35428 ± 1 154286	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \pm 1286\\ 520797\\ \pm 43321\\ 268275\\ \pm 98133\\ 262895\\ \pm 852\\ 245828\\ \pm 85121\\ 508568\\ \pm 17\\ 2214759\\ \end{array}$	$\begin{array}{r} 1760\\ 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164458\\ \pm 56945\\ 340229\\ \pm 11\\ 1481660\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094 94015 ± 305 87912 ± 30440 181871 ± 6 792030	± 103 ± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370 101372 ± 37081 99339 ± 322 92890 ± 32164 192171 ± 6 836884
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG (32008) 2000 HM53 (32039) 2000 JO23 (24796) 2001	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \hline \\ 6.87\times10^{18}\\ \pm1.8\times10^{16}\\ 1.57\times10^{14}\\ \pm3.34\times10^{13}\\ 5.86\times10^{12}\\ \pm3.56\times10^{12}\\ \pm3.56\times10^{12}\\ 1.44\times10^{16}\\ \pm1.41\times10^{16}\\ \pm1.41\times10^{11}\\ \pm4.14\times10^{11}\\ 6.34\times10^{13}\\ 5.20\times10^{13}\\ \hline \\ 5.20\times10^{13}\\ \hline \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ 41 \\ 1.4 \\ 13 \\ 53 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ 28387 \\ \pm 1 \\ 123624 \\ \pm 4 \\ 19502 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ 69610 \\ \pm 2 \\ 303143 \\ \pm 10 \\ 45560 \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380 38523 ± 125 36022 ± 12473 74522 ± 2 324536 ± 11	$\begin{array}{r} \pm 19 \\ \pm 19 \\ 18464 \\ \pm 121 \\ 16528 \\ \pm 198 \\ 17918 \\ \pm 93 \\ 376135 \\ \pm 36855 \\ 19425 \\ \pm 1 \\ 650371 \\ \pm 90 \\ 36280 \\ \pm 3018 \\ 18689 \\ \pm 6836 \\ 18314 \\ \pm 59 \\ 17125 \\ \pm 5930 \\ 35428 \\ \pm 1 \\ 154286 \\ \pm 5 \\ 22166 \\ \end{array}$	$\begin{array}{r} \pm 280 \\ \hline 265044 \\ \pm 1735 \\ \hline 237256 \\ \pm 2839 \\ \hline 257216 \\ \pm 1338 \\ \hline 5399378 \\ \pm 529042 \\ \hline 278848 \\ \pm 9 \\ \hline 9336000 \\ \pm 1286 \\ \hline 520797 \\ \pm 43321 \\ \hline 268275 \\ \pm 98133 \\ \hline 262895 \\ \pm 852 \\ \hline 245828 \\ \pm 85121 \\ \hline 508568 \\ \pm 17 \\ \hline 2214759 \\ \pm 74 \\ \hline 222862 \\ \hline \end{array}$	$\begin{array}{r} -160\\ -177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164458\\ \pm 56945\\ 340229\\ \pm 11\\ 1481660\\ \pm 50\\ 222622\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094 94015 ± 305 87912 ± 30440 181871 ± 6 792030 ± 26	± 103 ± 103 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370 101372 ± 37081 99339 ± 322 92890 ± 32164 192171 ± 6 836884 ± 27 105770
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG (32008) 2000 HM53 (32039) 2000 JO23 (34706) 2001 OP83	$\begin{array}{c} 8.26 \times 10^{13} \\ \pm 1.61 \times 10^{12} \\ 2.26 \times 10^{16} \\ \pm 7.94 \times 10^{14} \\ 4.82 \times 10^{13} \\ \pm 7.49 \times 10^{11} \\ 1.45 \times 10^{14} \\ \pm 3.56 \times 10^{13} \\ 3.97 \times 10^{13} \\ \hline 6.87 \times 10^{18} \\ \pm 1.8 \times 10^{16} \\ 1.57 \times 10^{14} \\ \pm 3.34 \times 10^{13} \\ \hline 5.86 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \hline 1.44 \times 10^{16} \\ \pm 1.41 \times 10^{11} \\ \pm 4.14 \times 10^{11} \\ \hline 6.34 \times 10^{13} \\ \hline 5.20 \times 10^{13} \\ \hline 3.53 \times 10^{13} \end{array}$	$ \begin{array}{c} 7.4 \\ 43 \\ 6 \\ 182 \\ 6.1 \\ 11377 \\ \pm 8 \\ 18 \\ 3.1 \\ 41 \\ 1.4 \\ 13 \\ 53 \\ 7 \\ \end{array} $	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ 28387 \\ \pm 1 \\ 123624 \\ \pm 4 \\ 18580 \\ +1 \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ 69610 \\ \pm 2 \\ 303143 \\ \pm 10 \\ 45560 \\ + 2 \\ \end{array}$	± 41 38838 ± 254 34766 ± 416 37691 ± 196 791188 ± 77522 40860 ± 1 1368033 ± 188 76314 ± 6348 39311 ± 14380 38523 ± 125 36022 ± 12473 74522 ± 2 324536 ± 11 48775 +2	$\begin{array}{r} \pm 19 \\ \pm 19 \\ \hline 18464 \\ \pm 121 \\ \hline 16528 \\ \pm 198 \\ \hline 17918 \\ \pm 93 \\ \hline 376135 \\ \pm 36855 \\ \hline 19425 \\ \pm 1 \\ \hline 650371 \\ \pm 90 \\ \hline 36280 \\ \pm 3018 \\ \hline 18689 \\ \pm 6836 \\ \hline 18314 \\ \pm 59 \\ \hline 17125 \\ \pm 5930 \\ \hline 35428 \\ \pm 1 \\ \hline 154286 \\ \pm 5 \\ \hline 23188 \\ +1 \\ \hline \end{array}$	$\begin{array}{r} \pm 280 \\ 265044 \\ \pm 1735 \\ 237256 \\ \pm 2839 \\ 257216 \\ \pm 1338 \\ 5399378 \\ \pm 529042 \\ 278848 \\ \pm 9 \\ 9336000 \\ \pm 1286 \\ 520797 \\ \pm 43321 \\ 268275 \\ \pm 98133 \\ 262895 \\ \pm 852 \\ 245828 \\ \pm 85121 \\ 508568 \\ \pm 17 \\ 2214759 \\ \pm 74 \\ 332862 \\ \pm 11 \\ \end{array}$	$\begin{array}{r} -186\\ -177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164458\\ \pm 56945\\ 340229\\ \pm 11\\ 1481660\\ \pm 50\\ 222683\\ +7\end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094 94015 ± 305 87912 ± 30440 181871 ± 6 792030 ± 26 119036 ± 4	± 103 ± 103 ± 103 ± 103 ± 103 ± 100151 ± 656 89651 ± 1073 97193 ± 506 2040246 ± 199909 105367 ± 3 3527765 ± 489 196792 ± 16370 101372 ± 37081 99339 ± 322 92890 ± 32164 192171 ± 6 836884 ± 27 125778 ± 4
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG (32008) 2000 HM53 (32039) 2000 JO23 (34706) 2001 OP83	$\begin{array}{c} 8.26\times10^{13}\\ \pm1.61\times10^{12}\\ 2.26\times10^{16}\\ \pm7.94\times10^{14}\\ 4.82\times10^{13}\\ \pm7.49\times10^{11}\\ 1.45\times10^{14}\\ \pm3.56\times10^{13}\\ 3.97\times10^{13}\\ \hline\\ 6.87\times10^{18}\\ \pm1.8\times10^{16}\\ 1.57\times10^{14}\\ \pm3.34\times10^{13}\\ 5.86\times10^{12}\\ \pm3.56\times10^{12}\\ \pm3.56\times10^{12}\\ \pm3.56\times10^{12}\\ 1.44\times10^{16}\\ \pm1.41\times10^{11}\\ 6.34\times10^{13}\\ \hline\\ 5.20\times10^{13}\\ \hline\\ 3.53\times10^{13}\\ \hline\\ 1.49\times10^{12}\\ \end{array}$	$\begin{array}{c} 7.4 \\ \hline 7.4 \\ \hline 43 \\ \hline 6 \\ 182 \\ \hline 6.1 \\ 11377 \\ \pm 8 \\ \hline 18 \\ \hline 3.1 \\ \hline 41 \\ \hline 1.4 \\ \hline 13 \\ \hline 53 \\ \hline 7 \\ \hline 3.26 \end{array}$	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ 28387 \\ \pm 1 \\ 123624 \\ \pm 4 \\ 18580 \\ \pm 1 \\ 24853 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ 69610 \\ \pm 2 \\ 303143 \\ \pm 10 \\ 45560 \\ \pm 2 \\ 60944 \\ \end{array}$	$\begin{array}{r} \pm 41 \\ 38838 \\ \pm 254 \\ 34766 \\ \pm 416 \\ 37691 \\ \pm 196 \\ \hline 791188 \\ \pm 77522 \\ 40860 \\ \pm 1 \\ 1368033 \\ \pm 188 \\ 76314 \\ \pm 6348 \\ 39311 \\ \pm 14380 \\ 38523 \\ \pm 125 \\ 36022 \\ \pm 12473 \\ \hline 74522 \\ \pm 2 \\ 324536 \\ \pm 11 \\ 48775 \\ \pm 2 \\ 65244 \\ \end{array}$	$\begin{array}{r} \pm 19 \\ \pm 19 \\ 18464 \\ \pm 121 \\ 16528 \\ \pm 198 \\ 17918 \\ \pm 93 \\ 376135 \\ \pm 36855 \\ 19425 \\ \pm 1 \\ 650371 \\ \pm 90 \\ 36280 \\ \pm 3018 \\ 18689 \\ \pm 6836 \\ 18314 \\ \pm 59 \\ 17125 \\ \pm 5930 \\ 35428 \\ \pm 1 \\ 154286 \\ \pm 5 \\ 23188 \\ \pm 1 \\ 31018 \\ \end{array}$	$\begin{array}{r} \pm 280 \\ 265044 \\ \pm 1735 \\ 237256 \\ \pm 2839 \\ 257216 \\ \pm 1338 \\ 5399378 \\ \pm 529042 \\ 278848 \\ \pm 9 \\ 9336000 \\ \pm 1286 \\ 520797 \\ \pm 43321 \\ 268275 \\ \pm 98133 \\ 262895 \\ \pm 852 \\ 245828 \\ \pm 85121 \\ 508568 \\ \pm 17 \\ 2214759 \\ \pm 74 \\ 332862 \\ \pm 11 \\ 445254 \\ \end{array}$	$\begin{array}{r} -160\\ \hline 177312\\ \pm 1160\\ \hline 158723\\ \pm 1899\\ \hline 172076\\ \pm 895\\ \hline 3612150\\ \pm 353925\\ \hline 186547\\ \pm 6\\ \hline 6245726\\ \pm 860\\ \hline 348410\\ \pm 28981\\ \hline 179474\\ \pm 65651\\ \hline 175875\\ \pm 570\\ \hline 164458\\ \pm 56945\\ \hline 340229\\ \pm 11\\ \hline 1481660\\ \pm 50\\ \hline 222683\\ \pm 7\\ \hline 297872\\ \end{array}$	± 100 94783 ± 620 84846 ± 1015 91984 ± 478 1930896 ± 189193 99720 ± 3 3338689 ± 460 186245 ± 15492 95939 ± 35094 94015 ± 305 87912 ± 30440 181871 ± 6 792030 ± 26 119036 ± 4 159229	$\begin{array}{r} \pm 103 \\ \pm 103 \\ \hline 100151 \\ \pm 656 \\ 89651 \\ \pm 1073 \\ 97193 \\ \pm 506 \\ 2040246 \\ \pm 199909 \\ 105367 \\ \pm 3 \\ 3527765 \\ \pm 489 \\ 196792 \\ \pm 16370 \\ 101372 \\ \pm 37081 \\ 99339 \\ \pm 322 \\ 92890 \\ \pm 32164 \\ 192171 \\ \pm 6 \\ 836884 \\ \pm 27 \\ 125778 \\ \pm 4 \\ 168247 \\ \end{array}$
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG (32008) 2000 HM53 (32039) 2000 JO23 (34706) 2001 OP83 (35107) 1991 VH	$\begin{array}{c} 8.26 \times 10^{13} \\ \pm 1.61 \times 10^{12} \\ 2.26 \times 10^{16} \\ \pm 7.94 \times 10^{14} \\ 4.82 \times 10^{13} \\ \pm 7.49 \times 10^{11} \\ 1.45 \times 10^{14} \\ \pm 3.56 \times 10^{13} \\ 3.97 \times 10^{13} \\ \hline 6.87 \times 10^{18} \\ \pm 1.8 \times 10^{16} \\ 1.57 \times 10^{18} \\ \pm 3.34 \times 10^{13} \\ 5.86 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 4.14 \times 10^{16} \\ \pm 1.41 \times 10^{11} \\ \hline 6.34 \times 10^{13} \\ 5.20 \times 10^{13} \\ \hline 3.53 \times 10^{13} \\ 1.49 \times 10^{12} \\ \pm 5.50 \times 10^{11} \end{array}$	$\begin{array}{c} 223 \\ \hline 7.4 \\ \hline 43 \\ \hline 6 \\ \hline 182 \\ \hline 6.1 \\ \hline 11377 \\ \pm 8 \\ \hline 18 \\ \hline 3.1 \\ \hline 41 \\ \hline 1.4 \\ \hline 13 \\ \hline 53 \\ \hline 7 \\ \hline 3.26 \\ \pm 0.035 \end{array}$	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ 28387 \\ \pm 1 \\ 123624 \\ \pm 4 \\ 18580 \\ \pm 1 \\ 24853 \\ \pm 3817 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ 69610 \\ \pm 2 \\ 303143 \\ \pm 10 \\ 45560 \\ \pm 2 \\ 60944 \\ \pm 9359 \\ \end{array}$	$\begin{array}{r} \pm 41 \\ 38838 \\ \pm 254 \\ 34766 \\ \pm 416 \\ 37691 \\ \pm 196 \\ \hline 791188 \\ \pm 77522 \\ 40860 \\ \pm 1 \\ 1368033 \\ \pm 188 \\ \hline 76314 \\ \pm 6348 \\ 39311 \\ \pm 14380 \\ 38523 \\ \pm 125 \\ 36022 \\ \pm 12473 \\ \hline 74522 \\ \pm 2 \\ 324536 \\ \pm 11 \\ 48775 \\ \pm 2 \\ 65244 \\ \pm 10020 \\ \end{array}$	$\begin{array}{r} \pm 19 \\ \pm 19 \\ 18464 \\ \pm 121 \\ 16528 \\ \pm 198 \\ 17918 \\ \pm 93 \\ 376135 \\ \pm 36855 \\ 19425 \\ \pm 1 \\ 650371 \\ \pm 90 \\ 36280 \\ \pm 3018 \\ 18689 \\ \pm 6836 \\ 18314 \\ \pm 59 \\ 17125 \\ \pm 5930 \\ 35428 \\ \pm 1 \\ 154286 \\ \pm 5 \\ 23188 \\ \pm 1 \\ 31018 \\ \pm 4763 \\ \end{array}$	$\begin{array}{r} \pm 280\\ 265044\\ \pm 1735\\ 237256\\ \pm 2839\\ 257216\\ \pm 1338\\ 5399378\\ \pm 529042\\ 278848\\ \pm 9\\ 9336000\\ \pm 1286\\ 520797\\ \pm 43321\\ 268275\\ \pm 98133\\ 262895\\ \pm 852\\ 245828\\ \pm 85121\\ 508568\\ \pm 17\\ 2214759\\ \pm 74\\ 332862\\ \pm 11\\ 445254\\ \pm 68379\\ \end{array}$	$\begin{array}{r} -166\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164458\\ \pm 56945\\ 340229\\ \pm 11\\ 1481660\\ \pm 50\\ 222683\\ \pm 7\\ 297872\\ \pm 45745\\ \end{array}$	$\begin{array}{r} \pm 100 \\ \pm 100 \\ 94783 \\ \pm 620 \\ 84846 \\ \pm 1015 \\ 91984 \\ \pm 478 \\ 1930896 \\ \pm 189193 \\ 99720 \\ \pm 3 \\ 3338689 \\ \pm 460 \\ 186245 \\ \pm 15492 \\ 95939 \\ \pm 35094 \\ 94015 \\ \pm 305 \\ 87912 \\ \pm 30440 \\ 181871 \\ \pm 6 \\ 792030 \\ \pm 26 \\ 119036 \\ \pm 4 \\ 159229 \\ \pm 24453 \\ \end{array}$	$\begin{array}{r} \pm 103 \\ \pm 103 \\ \hline 100151 \\ \pm 656 \\ 89651 \\ \pm 1073 \\ 97193 \\ \pm 506 \\ 2040246 \\ \pm 199909 \\ 105367 \\ \pm 3 \\ 3527765 \\ \pm 489 \\ 196792 \\ \pm 16370 \\ 101372 \\ \pm 37081 \\ 99339 \\ \pm 322 \\ 92890 \\ \pm 32164 \\ 192171 \\ \pm 6 \\ 836884 \\ \pm 27 \\ 125778 \\ \pm 4 \\ 168247 \\ \pm 25838 \\ \end{array}$
GL74 (17260) 2000 JQ58 (17365) 1978 VF11 (18890) 2000 EV26 (22899) 1999 TO14 (26074) Carlwirtz (26308) 1998 SM165 (26471) 2000 AS152 (27568) 2000 PT6 (29314) Eurydamas (31345) 1998 PG (32008) 2000 HM53 (32039) 2000 JO23 (34706) 2001 OP83 (35107) 1991 VH (38628) Huva	$\begin{array}{c} 8.26 \times 10^{13} \\ \pm 1.61 \times 10^{12} \\ 2.26 \times 10^{16} \\ \pm 7.94 \times 10^{14} \\ 4.82 \times 10^{13} \\ \pm 7.49 \times 10^{11} \\ 1.45 \times 10^{14} \\ \pm 3.56 \times 10^{13} \\ 3.97 \times 10^{13} \\ \hline \\ 6.87 \times 10^{18} \\ \pm 1.8 \times 10^{16} \\ 1.57 \times 10^{14} \\ \pm 3.34 \times 10^{13} \\ 5.86 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 3.56 \times 10^{12} \\ \pm 1.41 \times 10^{16} \\ \pm 1.41 \times 10^{16} \\ \pm 1.41 \times 10^{16} \\ \pm 1.41 \times 10^{11} \\ \hline \\ 6.34 \times 10^{13} \\ \hline \\ 5.20 \times 10^{13} \\ \hline \\ 3.53 \times 10^{13} \\ \hline \\ 1.49 \times 10^{12} \\ \pm 5.50 \times 10^{11} \\ 5.03 \times 10^{19} \\ \end{array}$	$\begin{array}{c} 223 \\ \hline 7.4 \\ \hline 43 \\ \hline 6 \\ \hline 182 \\ \hline 6.1 \\ \hline 11377 \\ \pm 8 \\ \hline 18 \\ \hline 3.1 \\ \hline 41 \\ \hline 1.4 \\ \hline 1.4 \\ \hline 13 \\ \hline 53 \\ \hline 7 \\ \hline 3.26 \\ \pm 0.035 \\ \hline 1740 \end{array}$	$\begin{array}{r} \pm 17 \\ 14794 \\ \pm 97 \\ 13243 \\ \pm 158 \\ 14357 \\ \pm 75 \\ 301383 \\ \pm 29529 \\ 15565 \\ \pm 1 \\ 521118 \\ \pm 70 \\ 29070 \\ \pm 2418 \\ 14975 \\ \pm 5478 \\ 14674 \\ \pm 48 \\ 13722 \\ \pm 4751 \\ 28387 \\ \pm 1 \\ 123624 \\ \pm 4 \\ 18580 \\ \pm 1 \\ 24853 \\ \pm 3817 \\ 41033 \\ \end{array}$	$\begin{array}{r} \pm 39 \\ 36278 \\ \pm 237 \\ 32474 \\ \pm 389 \\ 35206 \\ \pm 183 \\ 739035 \\ \pm 72412 \\ 38167 \\ \pm 1 \\ 1277857 \\ \pm 176 \\ 71284 \\ \pm 5929 \\ 36720 \\ \pm 13432 \\ 35983 \\ \pm 117 \\ 33648 \\ \pm 11651 \\ 69610 \\ \pm 2 \\ 303143 \\ \pm 10 \\ 45560 \\ \pm 2 \\ 60944 \\ \pm 9359 \\ 100619 \\ \end{array}$	$\begin{array}{r} \pm 41\\ 38838\\ \pm 254\\ 34766\\ \pm 416\\ 37691\\ \pm 196\\ 791188\\ \pm 77522\\ 40860\\ \pm 1\\ 1368033\\ \pm 188\\ 76314\\ \pm 6348\\ 39311\\ \pm 14380\\ 38523\\ \pm 125\\ 36022\\ \pm 12473\\ 74522\\ \pm 2\\ 324536\\ \pm 11\\ 48775\\ \pm 2\\ 65244\\ \pm 10020\\ 107719\\ \end{array}$	$\begin{array}{r} \pm 19 \\ \pm 19 \\ 18464 \\ \pm 121 \\ 16528 \\ \pm 198 \\ 17918 \\ \pm 93 \\ 376135 \\ \pm 36855 \\ 19425 \\ \pm 1 \\ 650371 \\ \pm 90 \\ 36280 \\ \pm 3018 \\ 18689 \\ \pm 6836 \\ 18314 \\ \pm 59 \\ 17125 \\ \pm 5930 \\ 35428 \\ \pm 1 \\ 154286 \\ \pm 5 \\ 23188 \\ \pm 1 \\ 31018 \\ \pm 4763 \\ 51210 \\ \end{array}$	$\begin{array}{r} \pm 280 \\ 265044 \\ \pm 1735 \\ 237256 \\ \pm 2839 \\ 257216 \\ \pm 1338 \\ 5399378 \\ \pm 529042 \\ 278848 \\ \pm 9 \\ 9336000 \\ \pm 1286 \\ 520797 \\ \pm 43221 \\ 268275 \\ \pm 98133 \\ 262895 \\ \pm 852 \\ 245828 \\ \pm 85121 \\ 508568 \\ \pm 17 \\ 2214759 \\ \pm 74 \\ 332862 \\ \pm 11 \\ 445254 \\ \pm 68379 \\ 735119 \\ \end{array}$	$\begin{array}{r} -166\\ \hline 177312\\ \pm 1160\\ 158723\\ \pm 1899\\ 172076\\ \pm 895\\ 3612150\\ \pm 353925\\ 186547\\ \pm 6\\ 6245726\\ \pm 860\\ 348410\\ \pm 28981\\ 179474\\ \pm 65651\\ 175875\\ \pm 570\\ 164458\\ \pm 56945\\ 340229\\ \pm 11\\ 1481660\\ \pm 50\\ 222683\\ \pm 7\\ 297872\\ \pm 45745\\ 491790\\ \end{array}$	$\begin{array}{r} \pm 100 \\ \pm 100 \\ 94783 \\ \pm 620 \\ 84846 \\ \pm 1015 \\ 91984 \\ \pm 478 \\ 1930896 \\ \pm 189193 \\ 99720 \\ \pm 3 \\ 3338689 \\ \pm 460 \\ 186245 \\ \pm 15492 \\ 95939 \\ \pm 35094 \\ 94015 \\ \pm 305 \\ 87912 \\ \pm 30440 \\ 181871 \\ \pm 6 \\ 792030 \\ \pm 26 \\ 119036 \\ \pm 4 \\ 159229 \\ \pm 24453 \\ 262889 \\ \end{array}$	$\begin{array}{r} \pm 103 \\ \pm 103 \\ 100151 \\ \pm 656 \\ 89651 \\ \pm 1073 \\ 97193 \\ \pm 506 \\ 2040246 \\ \pm 199909 \\ 105367 \\ \pm 3 \\ 3527765 \\ \pm 489 \\ 196792 \\ \pm 16370 \\ 101372 \\ \pm 37081 \\ 99339 \\ \pm 322 \\ 92890 \\ \pm 32164 \\ 192171 \\ \pm 6 \\ 836884 \\ \pm 27 \\ 125778 \\ \pm 4 \\ 168247 \\ \pm 25838 \\ 277777 \\ \end{array}$

(12355) Typhon	8.7×10^{17}	1580	144116	353392	378331	179861	2581880	1727261	923318	975607
(42555) Typhon	$\pm 3 \times 10^{16}$	±20	±190	±464	±497	±236	±3389	±2267	±1212	±1280
(44620) 1999	2.57×10^{11}	2	27376	67129	71866	34166	490445	328105	175390	185323
RS43	$\pm 1.10 \times 10^{11}$	-	±5612	±13761	±14732	± 7004	±100536	±67258	±35953	±37989
(47171) 1999	2.40×10^{15}	5.4	16300	39969	42789	20342	292011	195354	104427	110341
1C36, (<i>Deta</i>)	1.28×10 ¹⁹	7411	±10/	±203	±282	±134	± 1924	± 1287	±088	±/2/
(4/1/1) 1999 TC36 (gamma)	$+6\times10^{16}$	/411	2/380/ +26	0/040/ +63	124205 +67	544291 +32	4942259	3306340 +306	$\frac{1}{0}/423$ +163	180/510 +171
(46829) 1998	1.28×10^{19}	867	32273	79139	84723	40278	578186	386803	206768	218477
OS14	$\pm 6 \times 10^{16}$	±11	± 361	± 884	±947	± 450	± 6460	± 4322	± 2310	±2441
(51356) 2000	2.82×10 ¹³	10	37176	91161	97594	46397	666019	445563	238178	251667
RY76		13	±1	±3	±3	±2	±22	±15	± 8	± 8
(52216) 1002 BD	2.90×10 ¹³	4.0	13883	34043	36445	17326	248718	166391	88945	93982
(52510) 1992 BD	$\pm 5.34 \times 10^{11}$	4.9	±86	±210	±225	±107	±1536	±1028	±549	±581
(53432) 1999	1.39×10^{13}	4	14489	35529	38037	18083	259577	173655	92828	98085
UT55	19		±1	±1	±1	±1	±9	±6	±3	±3
(65489) Ceto	5.41×10^{10}	1840	91267	223799	239593	113904	1635074	1093854	584726	617840
($\pm 4.2 \times 10^{17}$	±44	±247	±605	±648	±308	±4422	±2958	±1581	$\pm 16/1$
(65803) Didymos	$5.2/\times10^{11}$	1.18 ± 0.02	12/21 +1154	31193 +2820	33394 +2020	158/6 +1440	227893 ± 20675	152459	81498	86113
(66063) 1008	$\pm 1.31 \times 1011$	± 0.03	±1154	± 2030	±3030	± 1440 17056	± 20073	± 13831 163790	±7394 87555	± 7012 02513
RO1	$\pm 2.29 \times 1011$	± 0.3	± 1218	± 2987	± 3198	± 1520	± 21827	± 14602	± 7805	± 8247
(66391) 1999	2.49×10^{12}	2.548	16369	40140	42972	20429	293259	196189	104874	110813
KW4	$\pm 5.4 \times 10^{10}$	± 0.015	±22	±55	±59	±28	±402	±269	±144	±152
((0000) 11	2.03×10 ¹¹	1.1	16306	39985	42807	20351	292133	195435	104471	110388
(69230) Hermes	$\pm 1.10 \times 10^{11}$	1.1	±4861	±11919	±12760	±6066	± 87079	±58255	±31141	±32904
(69406) 1995	2.54×10^{13}	53	15690	38474	41189	19582	281092	188049	100523	106216
SX48	$\pm 4.89 \times 10^{11}$	5.5	±101	±249	±266	±126	±1816	±1215	±649	±686
(76818) 2000	3.91×10^{13}	56	14367	35231	37717	17931	257396	172196	92048	97261
RG79	$\pm 9.77 \times 10^{11}$	5.0	±121	±297	±318	±151	±2172	±1453	±777	±821
(79472) 1998	4.56×10^{13}	9	21933	53783	57578	27373	392936	262872	140520	148478
AX4 (90219) 1000	$\pm 1.08 \times 10^{12}$		$\pm 1/6$	±431	±461	±219	±314/	±2105	± 1125	±1189
(80218) 1999 VO123	1.84×10	0.9	29090 +1	/2803	//941 +3	37054 +1	531900 +18	355838 +12	190215	200988
10125	7.46×10^{10}		16548	40577	43441	20652	296457	198328	106017	112021
(85938) 1999 DJ4	$\pm 3.76 \times 10^{10}$	0.8	± 4358	± 10688	± 11442	± 5440	± 78084	± 52237	± 27924	± 29505
	7.42×10 ¹¹	1.6	15388	37734	40396	19205	275681	184429	98587	104171
(88710) 2001 SL9	$\pm 4.63 \times 10^{10}$	1.6	±334	±818	±876	±416	±5978	±3999	±2138	±2259
(00482) Orous	6.36×10 ²⁰	9006	91188	223607	239387	113806	1633672	1092916	584225	617311
(90402) Of Cus	$\pm 3.3 \times 10^{18}$	±16	± 8	±19	±20	±9	±136	±91	±49	±51
(99913) 1997 CZ5	2.60×10^{14}	11	15008	36802	39399	18731	268875	179875	96153	101599
		1 500	±1	±1	±1	±1	±9	±6	±3	±3
(136617) 1994	2.66×10^{10}	1.729	23410	57404	61455	29216	419392	280570	149981	158474
(126617) 1004	$\pm 3.29 \times 10^{11}$	± 0.008	±939 82007	± 2505	± 2400	±11/2 102592	± 10827	± 11237	±0018	±0339
(130017) 1994 CC (gamma)	$+3.29 \times 10^{10}$	+0.130	+2203	203320 +5403	+5784	+2750	+39473	+26407	+14116	+14916
(137170) 1999	5.09×10^{13}	±0.100	16556	40597	43462	20662	296601	198424	106069	112076
HF1	$\pm 3.08 \times 10^{13}$	±1.8	±1301	± 3189	± 3414	±1623	± 23301	± 15588	±8333	±8805
(153591) 2001	9.51×10 ¹²	16.633	68360	167629	179459	85316	1224698	819315	437970	462773
SN263, (beta)	$\pm 1.3 \times 10^{11}$	±0.163	±361	±885	±947	±450	±6466	±4326	±2312	±2443
(153591) 2001	9.51×10^{12}	3.804	15634	38337	41043	19512	280091	187379	100165	105837
SN263, (gamma)	$\pm 1.3 \times 10^{11}$	± 0.002	±63	±155	±166	±79	±1131	±756	±404	±427
(153958) 2002	1.48×10^{11}	1.5	24668	60490	64758	30786	441936	295652	158043	166993
AM31	$\pm 4.79 \times 10^{10}$		±3421	±8389	±8981	± 4270	±61289	± 41002	± 21918	± 23159
(162000) 1990 OS	2.29×10^{-3} +4 53 × 10 ⁹	0.6	18392	45100 +3/2/	48283 +3676	22934 +1749	529502 +25086	220433 +16792	+8071	+0/70
(162483) 2000	$\pm 4.33 \times 10^{11}$	1.05	± 1400 17634	± 3434 43241	±3070 46292	$\pm 1/40$ 22008	± 23080 315917	± 10782 211346	±0971 112076	±9479 110374
(102403) 2000 P.I5	1.57~10	+0.1	+1680	+3241 +4120	+40292 +4410	+2003	+30099	+20136	+10764	+11373
(164121) 2003	1.27×10^{12}	3.93	46838	114854	122959	58455	839118	561365	300081	317075
YT1	$\pm 3.9 \times 10^{11}$	±0.8	± 84382	± 206918	±221520	± 105312	± 1511740	± 1011345	± 540620	±571237
(175706) 1996	4.26×10^{12}	3	16114	39515	42303	20111	288693	193134	103241	109088
FG3	$\pm 1.29 \times 10^{12}$	±0.6	±1591	± 3902	±4178	±1986	± 28510	± 19073	±10196	±10773
(185851) 2000	4.6×10^{11}	2.62	29554	72470	77584	36884	529461	354206	189343	200066
DP107	$\pm 5 \times 10^{10}$	±0.16	±746	±1828	±1957	±931	±13357	±8936	±4777	±5047
(276049) 2002	1.95×10^{13}	4.7	15205	37284	39915	18976	272399	182233	97414	102930
CE26	$\pm 2.5 \times 10^{12}$	± 0.2	±34	±83	±89	±42	±604	±404	±216	±228
(285263) 1998 OF2	1.44×10^{13} +2.07×10 ¹²	6.212 ±0.1	22213 ± 2112	54469 ±5190	58313	27722 ±2627	397950 +27040	266226	142313 ± 12525	150372 +14202
QE4	±3.9/~10	±0.1	±2113	±3180	±3340	±203/	±3/040	±23320	±13333	±14302

(311066) 2004	2 7 2 1 2 10	0.75	19797	48544	51970	24707	354662	237267	126832	134015
DC	3.59×10 ¹⁰	±0.045	±1189	±2914	±3120	±1483	±21292	±14244	±7614	±8046
(341520) Mors-	7.81×10^{17}	21040	1989401	4878302	5222558	2482835	35640794	23843469	12745664	13467475
Somnus	$\pm 9 \times 10^{15}$	± 70	±984	±2427	±2599	±1236	± 17740	±11866	±6344	±6714
(357439) 2004	2.87×10^{8}	0.5	42225	103543	110849	52698	756480	506081	270528	285849
BL86		0.5	±2	±3	± 4	±2	±25	±17	±9	±9
(363027) 1998	4.29×10 ¹¹	4.5	51957	127406	136397	64844	930826	622717	332877	351728
ST27		±0.5	±5775	±14161	± 15160	±7207	± 103460	±69214	±36999	±39094
(363067) 2000	2.00×10^{11}	0.61	0088	22285	23857	11242	162811	108920	58224	61521
CO101		0.01	9088	±1	± 1	11342	±5	±4	±2	±2
(363599) 2004	3.17×10 ⁹	0.25	14824	36350	38916	18501	265576	177669	94974	100352
FG11	$\pm 1.72 \times 10^{9}$	± 0.05	±571	± 1401	± 1500	±713	±10234	± 6846	± 3660	±3867
(374851) 2006	1.00×10^{12}	15	13042	31981	34238	16277	233651	156311	83557	88289
VV2	$\pm 1.41 \times 10^{11}$	1.5	±676	±1657	±1773	±843	±12103	± 8097	±4328	±4573
(385186) 1994	6.97×10^{11}	2	19644	48170	51569	24516	351926	235436	125854	132981
AW1	$\pm 4.44 \times 10^{10}$	2	±435	±1068	±1143	±543	± 7801	±5219	±2790	±2948
(399307) 1991	1.05×10^{11}	0.86	15887	38958	41707	19828	284626	190413	101786	107551
RJ2		0.80	±1	±1	±1	±1	±9	±6	±3	±4
(399774) 2005	1.17×10^{11}	0.6	10673	26172	28019	13321	191215	127921	68381	72254
NB7	$\pm 6.37 \times 10^{10}$	0.0	±3181	±7801	±8352	±3971	± 56997	±38131	±20383	±21537
1994 CI1	2.83×10^{9}	0.525	32329	79275	84869	40347	579180	387468	207123	218853
1774 C01	11	0.525	±1	±3	±3	±1	±19	±13	±7	±7
1994 XD	2.15×10^{11}	0.6	8723	21389	22898	10886	156267	104542	55883	59048
	$\pm 1.39 \times 10^{11}$	±0.3	± 2565	± 6289	± 6733	± 3201	± 45951	± 30741	± 16433	± 17363
2000 UG11	9.4×10 ³	0.426	17576	43100	46141	21936	314885	210656	112608	118985
	$\pm 1.6 \times 10^{7}$	± 0.027	±161	±394	±421	±200	±2876	±1924	± 1028	±1087
2002 BM26	1.82×10^{11}	1.4	21499	52718	56439	26831	385160	257669	137739	145539
	$\pm 2.72 \times 10^{10}$		+1187	+2011	$\pm 2 + 17$	1 1 1 0 1	1 1 1 1 2 2 2 1	+14779	$+^{\prime}/606$	± 8037
	4 == 400		=1107	12/11	±3117	±1482	±21269	+1+22)	±/000	-0007
2003 SS84	1.57×10^{9}	0.27	20236	49621	±3117 53122	±1482 25255	±21269 362527	242529	129645	136987
2003 SS84	1.57×10^9 $\pm 7.31 \times 10^8$	0.27	20236 ±4703	49621 ± 11532	±3117 53122 ±12346	± 1482 25255 ± 5869	± 21269 362527 ± 84254	242529 ± 56365	129645 ± 30130	136987 ±31837
2003 SS84 2005 AB	$\begin{array}{r} 1.57 \times 10^9 \\ \pm 7.31 \times 10^8 \\ 5.93 \times 10^{12} \end{array}$	0.27 3.4	$ \begin{array}{r} 20236 \\ \pm 4703 \\ 16357 \\ \hline \end{array} $	± 2911 ± 9621 ± 11532 40109	± 3117 53122 ± 12346 42940	± 1482 25255 ± 5869 20414	± 21269 362527 ± 84254 293038	± 14229 242529 ± 56365 196040	$ \begin{array}{r} 129645 \\ \pm 30130 \\ 104795 \\ $	$ \begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \bullet 4 \end{array} $
2003 SS84 2005 AB	$ \begin{array}{r} 1.57 \times 10^{9} \\ \pm 7.31 \times 10^{8} \\ 5.93 \times 10^{12} \\ \end{array} $	0.27 3.4	$ \begin{array}{r} 20236 \\ \pm 4703 \\ 16357 \\ \pm 1 \end{array} $	$ \begin{array}{r} \pm 2511 \\ 49621 \\ \pm 11532 \\ 40109 \\ \pm 1 \\ 20212 \\ \end{array} $	± 3117 53122 ± 12346 42940 ± 1	± 1482 25255 ± 5869 20414 ± 1	± 21269 362527 ± 84254 293038 ± 10	$ \begin{array}{r} _{1422} \\ _{242529} \\ _{56365} \\ _{196040} \\ _{7} \\ _{122201} \\ _{1222$	$ \begin{array}{r} 129645 \\ \pm 30130 \\ 104795 \\ \pm 4 \hline $	$ \begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \pm 4 \end{array} $
2003 SS84 2005 AB 2006 GY2	$ \begin{array}{r} 1.57 \times 10^{9} \\ \pm 7.31 \times 10^{8} \\ 5.93 \times 10^{12} \\ \hline 5.36 \times 10^{10} \end{array} $	0.27 3.4 0.5	$ \begin{array}{r} 20236 \\ \pm 4703 \\ 16357 \\ \pm 1 \\ 11546 \end{array} $	$\begin{array}{r} \pm 2511 \\ 49621 \\ \pm 11532 \\ 40109 \\ \pm 1 \\ 28312 \\ \end{array}$	$\begin{array}{r} \pm 3117 \\ 53122 \\ \pm 12346 \\ 42940 \\ \pm 1 \\ 30310 \\ \end{array}$	$ \begin{array}{r} \pm 1482 \\ 25255 \\ \pm 5869 \\ 20414 \\ \pm 1 \\ 14410 \\ \end{array} $	± 21269 362527 ± 84254 293038 ± 10 206850	$\begin{array}{r} \pm 1422 \\ 242529 \\ \pm 56365 \\ 196040 \\ \pm 7 \\ 138381 \\ \pm 5 \end{array}$	$ \begin{array}{r} 129645 \\ \pm 30130 \\ 104795 \\ \pm 4 \\ 73973 \\ 12 $	$ \begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \pm 4 \\ 78162 \\ \hline 2 \end{array} $
2003 SS84 2005 AB 2006 GY2	$ \begin{array}{r} 1.57 \times 10^{9} \\ \pm 7.31 \times 10^{8} \\ 5.93 \times 10^{12} \\ \hline 5.36 \times 10^{10} \\ \hline 2.26 \pm 10^{10} \end{array} $	0.27 3.4 0.5	$20236 \pm 4703 \\ 16357 \pm 1 \\ 11546 \\ 12955$	$\begin{array}{r} \pm 2511 \\ 49621 \\ \pm 11532 \\ 40109 \\ \pm 1 \\ 28312 \\ \pm 1 \\ 20075 \end{array}$	$\begin{array}{r} \pm 3117 \\ 53122 \\ \pm 12346 \\ 42940 \\ \pm 1 \\ 30310 \\ \pm 1 \\ 26272 \end{array}$	$\begin{array}{r} \pm 1482 \\ 25255 \\ \pm 5869 \\ 20414 \\ \pm 1 \\ 14410 \\ 17202 \end{array}$	$\begin{array}{r} \pm 21269 \\ \hline 362527 \\ \pm 84254 \\ \hline 293038 \\ \pm 10 \\ \hline 206850 \\ \pm 7 \\ \hline 249220 \\ \end{array}$	$ \begin{array}{r} \pm 1422 \\ 242529 \\ \pm 56365 \\ 196040 \\ \pm 7 \\ 138381 \\ \pm 5 \\ 166259 \\ \end{array} $	$ \begin{array}{r} 129645 \\ \pm 30130 \\ 104795 \\ \pm 4 \\ 73973 \\ \pm 2 \\ 00767 \end{array} $	$ \begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \pm 4 \\ 78162 \\ \pm 3 \\ 23704 \end{array} $
2003 SS84 2005 AB 2006 GY2 2007 DT103	$ \begin{array}{r} 1.57 \times 10^{9} \\ \pm 7.31 \times 10^{8} \\ 5.93 \times 10^{12} \\ \hline 5.36 \times 10^{10} \\ 2.26 \times 10^{10} \end{array} $	0.27 3.4 0.5 0.45	$20236 \pm 4703 \\ 16357 \pm 1 \\ 11546 \\ 13855 \\ \pm 1 \\ 11546 \\ 1156$	$\begin{array}{r} \pm 2511 \\ 49621 \\ \pm 11532 \\ 40109 \\ \pm 1 \\ 28312 \\ \pm 1 \\ 33975 \\ \pm 1 \end{array}$	$\begin{array}{r} \pm 3117 \\ 53122 \\ \pm 12346 \\ 42940 \\ \pm 1 \\ 30310 \\ \pm 1 \\ 36372 \\ \pm 1 \end{array}$	$\begin{array}{r} \pm 1482 \\ 25255 \\ \pm 5869 \\ 20414 \\ \pm 1 \\ 14410 \\ 17292 \\ \pm 1 \end{array}$	$\begin{array}{r} \pm 21269 \\ \hline 362527 \\ \pm 84254 \\ \hline 293038 \\ \pm 10 \\ \hline 206850 \\ \pm 7 \\ \hline 248220 \\ \pm 8 \end{array}$	$\begin{array}{r} 242229\\ \pm 56365\\ 196040\\ \pm 7\\ 138381\\ \pm 5\\ 166058\\ 60058\\ \end{array}$	$ \begin{array}{r} 129645 \\ \pm 30130 \\ 104795 \\ \pm 4 \\ 73973 \\ \pm 2 \\ 88767 \\ 42 \end{array} $	$ \begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \pm 4 \\ 78162 \\ \pm 3 \\ 93794 \\ + 2 \\ \end{array} $
2003 SS84 2005 AB 2006 GY2 2007 DT103	$ \begin{array}{r} 1.57 \times 10^{9} \\ \pm 7.31 \times 10^{8} \\ 5.93 \times 10^{12} \\ \hline 5.36 \times 10^{10} \\ 2.26 \times 10^{10} \\ \hline 1.05 \times 10^{11} \end{array} $	0.27 3.4 0.5 0.45	$20236 \\ \pm 4703 \\ 16357 \\ \pm 1 \\ 11546 \\ 13855 \\ \pm 1 \\ 25862$	$\begin{array}{r} \pm 2511 \\ 49621 \\ \pm 11532 \\ 40109 \\ \pm 1 \\ 28312 \\ \pm 1 \\ 33975 \\ \pm 1 \\ 62420 \end{array}$	$\begin{array}{r} \pm 3117 \\ 53122 \\ \pm 12346 \\ 42940 \\ \pm 1 \\ 30310 \\ \pm 1 \\ 36372 \\ \pm 1 \\ (77905) \end{array}$	$\begin{array}{r} \pm 1482 \\ 25255 \\ \pm 5869 \\ 20414 \\ \pm 1 \\ 14410 \\ 17292 \\ \pm 1 \\ 22078 \end{array}$	$\begin{array}{r} \pm 21269 \\ \hline \pm 21269 \\ \hline 362527 \\ \pm 84254 \\ \hline 293038 \\ \pm 10 \\ \hline 206850 \\ \pm 7 \\ \hline 248220 \\ \pm 8 \\ \hline 462244 \end{array}$	$\begin{array}{r} \pm 1422 \\ 242529 \\ \pm 56365 \\ 196040 \\ \pm 7 \\ 138381 \\ \pm 5 \\ 166058 \\ \pm 6 \\ 200074 \end{array}$	$ \begin{array}{r} 129645 \\ \pm 30130 \\ 104795 \\ \pm 4 \\ 73973 \\ \pm 2 \\ 88767 \\ \pm 3 \\ 165600 \\ \end{array} $	$\begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \pm 4 \\ 78162 \\ \pm 3 \\ 93794 \\ \pm 3 \\ 175092 \end{array}$
2003 SS84 2005 AB 2006 GY2 2007 DT103 2007 LE	$ \begin{array}{r} 1.57 \times 10^{9} \\ \pm 7.31 \times 10^{8} \\ 5.93 \times 10^{12} \\ \hline 5.36 \times 10^{10} \\ 2.26 \times 10^{10} \\ \hline 1.05 \times 10^{11} \end{array} $	0.27 3.4 0.5 0.45 1.4	$\begin{array}{r} -2110\\ -20236\\ \pm 4703\\ 16357\\ \pm 1\\ 11546\\ 13855\\ \pm 1\\ 25863\\ \pm 1\\ \end{array}$	$\begin{array}{r} \pm 2511 \\ 49621 \\ \pm 11532 \\ 40109 \\ \pm 1 \\ 28312 \\ \pm 1 \\ 33975 \\ \pm 1 \\ 63420 \\ \pm 2 \end{array}$	$\begin{array}{r} \pm 3117 \\ 53122 \\ \pm 12346 \\ 42940 \\ \pm 1 \\ 30310 \\ \pm 1 \\ 36372 \\ \pm 1 \\ 67895 \\ \pm 2 \end{array}$	$\begin{array}{r} \pm 1482 \\ 25255 \\ \pm 5869 \\ 20414 \\ \pm 1 \\ 14410 \\ 17292 \\ \pm 1 \\ 32278 \\ \pm 1 \end{array}$	$\begin{array}{r} \pm 21269 \\ \hline \pm 21269 \\ \hline 362527 \\ \pm 84254 \\ \hline 293038 \\ \pm 10 \\ \hline 206850 \\ \pm 7 \\ \hline 248220 \\ \pm 8 \\ \hline 463344 \\ \pm 15 \end{array}$	$\begin{array}{r} \pm 14229\\ \pm 242529\\ \pm 56365\\ 196040\\ \pm 7\\ 138381\\ \pm 5\\ 166058\\ \pm 6\\ 309974\\ \pm 10\\ \end{array}$	$\begin{array}{c} 129645 \\ \pm 30130 \\ 104795 \\ \pm 4 \\ 73973 \\ \pm 2 \\ 88767 \\ \pm 3 \\ 165699 \\ \pm 6 \end{array}$	$\begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \pm 4 \\ 78162 \\ \pm 3 \\ 93794 \\ \pm 3 \\ 175082 \\ \end{array}$
2003 SS84 2005 AB 2006 GY2 2007 DT103 2007 LE	$ \begin{array}{r} 1.57 \times 10^{9} \\ \pm 7.31 \times 10^{8} \\ 5.93 \times 10^{12} \\ \hline 5.36 \times 10^{10} \\ 2.26 \times 10^{10} \\ \hline 1.05 \times 10^{11} \\ 1.91 \times 10^{11} \end{array} $	0.27 3.4 0.5 0.45 1.4	$\begin{array}{r} -2110\\ -20236\\ \pm 4703\\ 16357\\ \pm 1\\ 11546\\ 13855\\ \pm 1\\ 25863\\ \pm 1\\ 225863\\ \pm 1\end{array}$	$\begin{array}{r} \pm 2511\\ 49621\\ \pm 11532\\ 40109\\ \pm 1\\ 28312\\ \pm 1\\ 33975\\ \pm 1\\ 63420\\ \pm 2\\ 55627\end{array}$	$\begin{array}{r} \pm 3117 \\ 53122 \\ \pm 12346 \\ 42940 \\ \pm 1 \\ 30310 \\ \pm 1 \\ 36372 \\ \pm 1 \\ 67895 \\ \pm 2 \\ 60621 \end{array}$	$\begin{array}{r} \pm 1482 \\ 25255 \\ \pm 5869 \\ 20414 \\ \pm 1 \\ 14410 \\ 17292 \\ \pm 1 \\ 32278 \\ \pm 1 \\ 28810 \\ \end{array}$	$\begin{array}{r} \pm 21269 \\ \hline \pm 21269 \\ \hline 362527 \\ \pm 84254 \\ \hline 293038 \\ \pm 10 \\ \hline 206850 \\ \pm 7 \\ \hline 248220 \\ \pm 8 \\ \hline 463344 \\ \pm 15 \\ \hline 412700 \\ \hline \end{array}$	$\begin{array}{r} \pm 1422 \\ \pm 14229 \\ \pm 56365 \\ 196040 \\ \pm 7 \\ 138381 \\ \pm 5 \\ 166058 \\ \pm 6 \\ 309974 \\ \pm 10 \\ 276762 \end{array}$	$\begin{array}{r} 1,7000\\ 129645\\ \pm 30130\\ 104795\\ \pm 4\\ 73973\\ \pm 2\\ 88767\\ \pm 3\\ 165699\\ \pm 6\\ 147045\end{array}$	$\begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \pm 4 \\ 78162 \\ \pm 3 \\ 93794 \\ \pm 3 \\ 175082 \\ \pm 6 \\ 156224 \end{array}$
2003 SS84 2005 AB 2006 GY2 2007 DT103 2007 LE 2008 BT18	$\begin{array}{r} 1.57 \times 10^9 \\ \pm 7.31 \times 10^8 \\ 5.93 \times 10^{12} \\ \hline 5.36 \times 10^{10} \\ \hline 2.26 \times 10^{10} \\ \hline 1.05 \times 10^{11} \\ \hline 1.81 \times 10^{11} \end{array}$	0.27 3.4 0.5 0.45 1.4 1.5	$\begin{array}{r} -2110\\ -20236\\ \pm 4703\\ 16357\\ \pm 1\\ 11546\\ 13855\\ \pm 1\\ 25863\\ \pm 1\\ 23092\\ -3002\\ -3002\\$	$\begin{array}{r} \pm 2511\\ 49621\\ \pm 11532\\ 40109\\ \pm 1\\ 28312\\ \pm 1\\ 33975\\ \pm 1\\ 63420\\ \pm 2\\ 56625\\ 56625\\ \end{array}$	$\begin{array}{r} \pm 3117 \\ 53122 \\ \pm 12346 \\ 42940 \\ \pm 1 \\ 30310 \\ \pm 1 \\ 36372 \\ \pm 1 \\ 67895 \\ \pm 2 \\ 60621 \\ \pm 2 \end{array}$	$\begin{array}{r} \pm 1482 \\ 25255 \\ \pm 5869 \\ 20414 \\ \pm 1 \\ 14410 \\ 17292 \\ \pm 1 \\ 32278 \\ \pm 1 \\ 28819 \\ + 1 \end{array}$	$\begin{array}{r} \pm 21269 \\ \hline \pm 21269 \\ \hline 362527 \\ \pm 84254 \\ \hline 293038 \\ \pm 10 \\ \hline 206850 \\ \pm 7 \\ \hline 248220 \\ \pm 8 \\ \hline 463344 \\ \pm 15 \\ \hline 413700 \\ \pm 14 \\ \end{array}$	$\begin{array}{r} \pm 1422 \\ \pm 14229 \\ \pm 56365 \\ 196040 \\ \pm 7 \\ 138381 \\ \pm 5 \\ 166058 \\ \pm 6 \\ 309974 \\ \pm 10 \\ 276763 \\ \end{array}$	$\begin{array}{r} 1,7000\\ 129645\\ \pm 30130\\ 104795\\ \pm 4\\ 73973\\ \pm 2\\ 88767\\ \pm 3\\ 165699\\ \pm 6\\ 147945\\ 45\end{array}$	$\begin{array}{r} 136987 \\ \pm 31837 \\ 110729 \\ \pm 4 \\ 78162 \\ \pm 3 \\ 93794 \\ \pm 3 \\ 175082 \\ \pm 6 \\ 156324 \\ 5 \end{array}$

Додаток С.

Рис. С.1. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Petit-Prince" астероїда (45) Eugenia.

Рис. С.2. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Princesse" астероїда (45) Eugenia.

Рис. С.3. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Romulus" астероїда (87) Sylvia.

Рис. С.4. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Remus" астероїда (87) Sylvia.

Рис. С.5. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "S/2000 (90) 1" астероїда (90) Antiope.

Рис. С.6. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Beta" астероїда (66391) 1999 KW4.

Рис. С.7. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Charon" карликової планети (134340) Pluto.

Рис.С.8. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Styx" карликової планети (134340) Pluto.

Рис. С.9. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Nix" карликової планети (134340) Pluto.

Рис. С.10. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Kerberos" карликової планети (134340) Pluto.

Рис. С.11. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Hydra" карликової планети (134340) Pluto.

Рис. С.12. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Hi'iaka" транснептунового об'єкта (136108) Haumea.

Рис. С.13. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Namaka" транснептунового об'єкта (136108) Haumea.

Рис. С.14. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Веta" астероїда (136617) 1994 СС.

Рис. С.15. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Gamma" астероїда (136617) 1994 СС.

Рис. С.16. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Beta" астероїда (153591) 2001 SN263.

Рис. С.17. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Gamma" астероїда (153591) 2001 SN263.

Рис. С.18. Велика піввісь, ексцентриситет, нахил, аргумент перигелію і довгота висхідного вузла для супутника "Thorondor" об'єкта (385446) Manwe.

Рис. С.19. Ефект Коzai для супутників астероїдів (45) Eugenia, (87) Sylvia, (90) Antiope відповідно.

Рис. С.20. Ефект Когаі для супутників системи (134340) Pluto.

Рис. С.21. Ефект Коzai для супутників астероїдів (66391) 1999 КW4, (136108) Наитеа, (136617) 1994 СС відповідно.

Рис. С.22. Ефект Коzai для супутників астероїдів (153591) 2001 SN263, (385446) Мапwe відповідно.